Visualizing Eye Movements in Formal Cognitive Models
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Fig. 1: Visualizing eye tracking data generated by cognitive models of visual multitasking. (a) The model’s internal representation
of the experiment with its visual scanpath drawn in red. (b) Virtual simulation of a person, whose eye movements are powered by
a model of visual attention. (a) and (b) simulate (c) a typical human user, like the one depicted here, performing the multitasking

experiment wearing eye tracking equipment).

Abstract—We present two visualization approaches illustrating the value of formal cognitive models for predicting, capturing, and
understanding eye tracking as a manifestation of underlying cognitive processes and strategies. Computational cognitive models are
formal theories of cognition which can provide predictions for human eye movements in visual decision making tasks. Visualizing
the internal dynamics of a model provides insights into how the interplay of cognitive mechanisms influences the observable eye
movements. Animation of those model behaviors in virtual human agents gives explicit, high fidelity visualizations of model behavior,
providing the analyst with an understanding of the simulated human’s behavior. Both can be compared to human data for insight
about cognitive mechanisms engaged in visual tasks and how eye movements are affected by changes in internal cognitive strategies,

external interface properties, and task demands.

Index Terms—ACT-R, Cognitive architectures, Cognitive model visualization, Eye tracking, Virtual agents.

1 INTRODUCTION

Eye tracking technology provides a critical data source for the design
and evaluation of visual analytics tools. The efficacy of information
visualizations for human discovery, insight, and decision making is
driven by a visualization’s ability to successfully leverage perceptual
and cognitive mechanisms [12]. Eye movements provide invaluable
non-invasive measures of attention and visual information process-
ing for assessing visualization interface efficacy. However, teasing
apart the mechanisms supporting the observed behavior can be dif-
ficult based on eye tracking alone. Computational cognitive models
provide powerful tools for understanding visual processes in complex
tasks. Cognitive models are formal instantiations of theories about
how the mind functions and operates in the physical world [3]. They
capture perceptual, cognitive, and motor behaviors to produce predic-
tions about human behavior, such as response choice and accuracy, re-
sponse speed, manual motor activity, and eye movements. Critically,
because of their computational nature, models can be extensively ex-
plored at a low cost to researchers in ways that provide specific pre-
dictions of human behavior.

Computational cognitive models can perform tasks with the same
visual interface environments as human users and can be designed to
produce eye movements similar to humans. Thus, we can use basic
units of analysis like fixation locations, dwell times, and scanpaths,
to study both human and model eye movements. In addition, if we
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can visualize the internal dynamics of the model, we can begin to gain
insights into the underlying processes producing the observable eye
behaviors. For example, the order of operations within the model high-
light whether mental processes are causing eye movements or external
events are diverting eye movements and triggering mental processes.
For example, if an item in the memory process is activated before an
eye movement process is activated, then we can infer that memory was
causing the agent to shift their focus of attention in the display. In this
way, we gain some understanding about the cognitive processes under-
lying visual task performance and how they are affected by interface
attributes.

Visualization plays a critical role in elucidating the eye movement
behavior from formal models of human cognition as seen across Fig-
ure 1. The goal of the present work is to leverage two very different
types of visualization for an initial exploration of the complex inter-
play of cognitive activity and observable eye movements. We hypoth-
esize that a combined approach will enable three types of insight. In-
sights about the cognitive mechanisms are gained by visualizing inter-
nal model dynamics during task performance together with model eye
movement behavior. Insights about model predictions for the physical
human eye movements themselves are gained by embodying model
behavior in virtual human agents. Finally, insights about cognitive
strategies, model validity, and realism are gained by simultaneously
visualizing and embodying model eye movements, comparing those
to human eye movement behaviors, or directly comparing the dynam-
ics and predicted movements of multiple candidate models. To enable
this exploration, we present two visualization tools: a Dashboard sys-
tem for capturing internal model dynamics supporting eye movement
behavior, and an approach to virtually embodying model eye move-
ments in human agents.

Both visualization techniques leverage the client-server software
Simplified Interfacing for Modeling Cognition - JavaScript (SIMCog-
JS) [7]. SIMCog currently connects JAVA ACT-R (see next section)
with a JavaScript-based multitasking environment. This environment,
shown on the touchscreen in Figure 1c, contains four tasks requiring



continuous attention by the user to different alerts. Clockwise from
upper left, these are a Monitoring task (response to out-of-state visual
cues), Tracking task (continuously track an object with the mouse),
Resource Management task (keep fuel levels within indicated range
by controlling flow), and Communications task (change channel val-
ues when cued). All four quadrants entail visual alerts that can grab
visual attention, and correct responses to the tasks require an observer
(human or model) to periodically scan between tasks for those alerts.
In the present work, to demonstrate the visual analytics and virtual
embodiment of model behaviors, we utilize this task environment to
simulate eye movements during multitasking from two models and il-
lustrate the visualizations to compare model behaviors. In order to do
this, we captured the SIMCog message streams. The internal activity
of ACT-R is parsed in SIMCog and saved to a CSV for Dashboard an-
alytics. The JSON task environment change messages are sent into the
virtual embodiment task display. Model events such as eye locations
and key presses are pushed into JSON messages and sent to the virtual
embodiment. The result of this is that while ACT-R is multitasking,
we can simultaneously visualize its internal activity and visualize the
predictions for human eye movement behaviors. Before we introduce
our visualizations, we review the characteristics of ACT-R.

2 ADAPTIVE CONTROL OF THOUGHT-RATIONAL (ACT-R)

One way to model human activity is with cognitive architectures. The
cognitive architecture used in the current research is ACT-R [1]. Other
cognitive architectures, like EPIC [9] and Soar [10], or other modeling
formalisms, like Guided Search [20], could also be utilized for such re-
search. The methods for visualizing model behavior generalize across
choice of models, and can serve as a method to compare candidate eye
movement models.

ACT-R is a general theory of human cognition, including cognitive,
perceptual, and motor processes. The ACT-R cognitive architecture is
a computational instantiation of that theory. Figure 2 illustrates a box-
and-arrow representation of ACT-R. The cognitive architecture is used
to build models that simulate how people perform tasks given the cog-
nitive, perceptual, and motor constraints provided by ACT-R and the
dynamics of the task with which ACT-R interacts, much as a human
would. For the current discussion, it is critical that ACT-R produce eye
movements. ACT-R includes an implementation of Eye Movements
and Movement of Attention (EMMA) [16], one theory that links eye
movements to the covert shifts of visual attention produced by ACT-
R. Other theories of eye movements, like PAAV [11], could be utilized
within ACT-R.

In ACT-R, covert shifts of attention are required for visual object
encoding. In EMMA, object eccentricity, with respect to the fixation
location of the eyes, and how frequently the object has been attended
affect the time to encode the object. Eye movements tend to follow
covert attention. However, an eye movement to an attended object
might not occur if the covert attention to that object is brief, and extra
eye movements (i.e., corrective saccades) can occur when the eyes
overshoot or undershoot the center of covert attention.

The strategies that ACT-R models bring to bear on a task are en-
coded in production rules. Production rules are fine-grained represen-
tations of procedural knowledge that “fire” when the rule’s conditions
are met. This firing can change the model’s internal state and initi-
ate external actions. For example, a rule might specify that whenever
a red object appears and visual attention is not busy encoding some-
thing else, then shift attention (and perhaps the eyes) to that red object.
Only one rule may fire at a time, and which rule fires is primarily de-
termined by the contents of the buffers (internal storage units). ACT-R
includes a number of modules and associated buffers that instantiate
theory related to specific cognitive processes (e.g., declarative mem-
ory). The modules make predictions about the timing and accuracy as-
sociated with the specific cognitive process. It is the interaction among
the modules, buffers, production rules, and external environment that
generate predictions of human behavior.

The output of model simulations includes behavioral data similar to
that produced in human observations, such as response time, error rate,
and eye movements. In addition, the cognitive architecture provides
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Fig. 2: Adaptive Control of Thought-Rational (ACT-R) [1] diagram

a detailed trace of the perceptual, motoric, and cognitive processes
recruited by the simulated human to produce that behavior.

The use of formal cognitive models, such as ACT-R, allows one to
explore how visual behavior is determined through the interaction of
perceptual processes, manual motor interaction, and other cognitive
processes like associative memory. An analyst encodes their hypothe-
ses of how people accomplish a task in computational models, runs
numerous simulations with those models, and then compares the re-
sults of the simulation with human data from the same task to help
confirm or deny those hypotheses. While the use of such models
does not fully confirm the underlying hypotheses, previous research
has shown the utility of this methodology for understanding, among
other things, how people visually scan graphs [14], visually interleave
complex dual-tasks [21], and visually search menus [6]. Visualizing
the model’s simulated eye movements, along with the detailed trace
of the processes that produced those scanpaths, can provide additional
insight into how people accomplish visual tasks.

3 ViISUAL ANALYTICS DASHBOARD

We present a Model Visualization Dashboard to visualize the internal
and eye movement activity of cognitive models. To populate the Dash-
board, model states are stored from SIMCog into a time series data set,
stored in a CSV file. These data contain information about the inter-
nal states of the model, requests for interaction with the interface, and
changes in interface elements “perceived” by ACT-R. By reading this
CSYV, the Dashboard enables playback of ACT-R states and behaviors
over the course of the task, and provides a human user the ability to
examine the data using different performance metrics. The Dashboard
visualizes the raw data file in a web-browser application written in
Node.js. The Dashboard interface uses common web languages, such
as HTML and CSS, and JavaScript libraries (e.g., D3 [2]) to capture
different data types within customizable dynamic gauges.

The Model Visualization Dashboard is illustrated in Figure 3; two
models are visualizations are shown side-by-side, each containing a
set of gauges capturing model behaviors. The Dashboard can replay a
model performing tasks, and playback controls are given at the top of
the screen. Thus, we get real-time and summary visualizations of the
model behaviors. Total task execution time is given in the radial Task
Time gauge.

The central Task Visualization gauge shows the model’s visicon, its
internal visual representation. Both the recent eye movements (red
line) and mouse movements (green line) are overlaid on the Task.
These paths are transient and show the recent few seconds of activ-
ity. A heat map is also overlaid to show all fixations from the start of
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Fig. 3: Dashboard Visualization of simulated eye movement data from ACT-R models implementing different multitasking strategies.

the task. This allows the researcher to see the task from the model’s
perspective with the additional insight given by the mouse and eye
locations.

Below the Task Visualizer is the Eye Quadrant Focus gauge, uti-
lizing a scarf plot visualization of the duration spent in each area of
interest (AOI) in the task. The AOIs correspond to the four quadrants.
If a model switches tasks frequently, the scarf colors will change more
often. During playback, the current quadrant in which the model is
looking is named below the plot, and the white slider corresponds to
the current time point in the model replay.

The Module Activity Gauge above the Task Visualizer gives a bar
graph showing the level of activity in each of ACT-R’s modules from
the start of the task. The Module Activity Gauge can reveal when spe-
cific resources are a bottleneck across all goals. For example, if all task
performance declines over an interval in which visual resource usage
is maximized, then we can infer that the visual demands of the tasks
are too high for successful completion of all goals. As shown in Fig-
ure 3, different strategies may utilize resources differently, resulting in
different heights of the Module Activity Bars.

The Visualization Dashboard provides multiple ways to view model
strategies in action, going well beyond a simple video playback of the
model performing the task. Additional gauges might be added to illus-
trate the sequence of production rules firing as the task is performed, as
well as illustrations of the model’s motor activity, to further capture the
underlying cognitive processes. Our Model Visualization Dashboard
allows an analyst to see which tasks or actions are slowing perfor-
mance for a given model. This empowers a researcher to draw conclu-
sions about human performance or make modifications to a model or
the task interface. Insights about internal processes lead to hypotheses
about observable human behaviors which can be tested through both
animation and human experiments.

4 VIRTUAL EMBODIMENT OF MODEL EYE MOVEMENTS

Beyond examining the internal model dynamics, we visualize eye
movement by embodying model activity in a virtual character oper-
ating in a 3-D environment. This gives us a concrete way to examine
model predictions as they would play out in real people, and may allow

an analyst to quickly observe a cognitive model’s head and eye move-
ments, determining unrealistic behavior at a glance. The 3-D environ-
ment allows the analyst to move the camera for different views of the
agent in action. The virtual characters further allow us to examine data
such as head movements from mobile eye trackers, complimenting the
2-D view of our analytics dashboard. Figures 1b and 4 illustrate this
concept with a character multitasking. Typically, eye tracking software
captures the foveal region, measured in pixels relative to the captured
image. This is often interpreted as the location of visual attention and
is similar to the information produced from ACT-R’s vision module.
Using a virtual character to display eye movement patterns can pro-
vide an analyst with a high fidelity visualization method to examine
the realism of a model’s saccade, fixation, or smooth pursuit behav-
iors. Again, in the present work, the data driving this virtual agent is
derived from SIMCog-JS JSON messages.

The utility of virtually modeling attention in 3-D space has been
shown in work eliciting joint attention between agents and people [4].
However, these methods only model the position of the eyes and do
not model the scanpath. Furthermore, unlike the models used by
Itti et al. [8], which implemented eye movements based on low-level
salience maps to control virtual agents, we use cognitive architecture-
based models. These architecture-based models capture higher-level
cognitive processes supporting eye movements with parameters that
can be tailored to emulate eye tracking data in specific tasks.

To calculate eye movements from either a model-generated or
human-measured center of attention, we first must determine the world
position of the fixation region in 3-D space. This is accomplished by
assuming all of our data is modeled from a task displayed on a screen
in front of the virtual character. By using this assumption, the area of
attention for a given task can be converted into world coordinates by
a simple transformation, treating the center of the screen in the vir-
tual environment as the origin. We attach a halo or orb to the world
position, allowing an analyst the ability to track the movement of a
character’s eyes, and essentially view in a virtual simulation the same
information that is seen in Figure 1a.

Once the fixation location is determined in world coordinates, the
rotation of the eye and head is then determined through cyclic coor-
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Fig. 4: Front view (a) and side view (b) showing the explicit fixation
beams illustrating the gaze angle and focus of attention within the task
environment. The beams are the red lines and the focus of attention is
the white halo on the virtual task screen.

dinate descent inverse kinematics [19]. This provides an easy method
to switch from one eye position to another. Inverse kinematics only
provide the end rotations of a series of selected joints. This will cause
the center gaze of the eye to snap to a given rotation. This appears
as a jump, which is acceptable for ACT-R as it currently only pro-
duces saccadic eye movements. Yet, for human data or other models,
an agent needs to perform other forms of eye movement, such as a
smooth pursuit. For smooth pursuit eye movements, using cyclic coor-
dinate descent can cause undesirable and unrealistic behavior. There-
fore, we linearly interpolate between gaze points, which provides the
movement trajectory between known points. We examined two other
common interpolation methods, SLERP and SQUAD [5], but have
found that these methods create strange eye movement patterns be-
tween points due to their inherent spherical nature. More complex
interpolation techniques such as Gaussian Interpolation have not been
examined using virtual human animations and are left for future work.

After examining the character operating on virtual tasks using our
generated eye movement models, we noticed that it is difficult to watch
their eye and head movement while simultaneously examining the ar-
eas of attention that eye tracking data and cognitive models produced.
The size of the eyes, specifically of the pupil and iris, is quite small
relative to the rest of the body and to the distance between the charac-
ter and screen. Therefore, we also provide a method to exaggerate the
eye movement and track the connection between the area of attention
and center point of the eye socket. The connection is modeled as fixa-
tion beams, one for each eye, seen in Figure 4. This exaggeration can
also be combined with the halo over the area of attention, which can
be seen in Figure 4a.

To model the fixation beams connecting a character’s eye to the area
of attention, we construct a rod from the area of attention (transformed
into world coordinates) to the center-point of the agent’s eye. Pitch
and yaw rotations are calculated between the two points, providing
a new transformation matrix to the rod. Using a rod between eyes
allows for more exaggerated movements of the eyes and head, creating
more noticeable differences that might be lost using other visualization
tools.

5 VISUALIZING EYE MOVEMENTS STRATEGIES

We illustrate the utility of this multi-pronged approach to visualizing
formal model eye movements in the comparison of two candidate mul-
titasking models. Using ACT-R [1] with EMMA [16], we developed
multiple, hypothetical task-interleaving strategies. These models are a
priori predictions of human behavior based on task analyses and con-
straints provided by the cognitive architecture.

One theory about how people multitask is that they interleave multi-
ple “threads of thought”, switching between these threads as cognitive
processes and task demands allow [17]. Two simplified multitasking
strategies along these lines are Task-Boundary Interleaving (TBI) and
Response-Boundary Interleaving (RBI). The TBI strategy only shifts
visual attention to another task when either no response is needed to
the currently attended task or after all key presses to resolve that task

have been initiated. That is, only when one task is completed will the
system switch to a different task. The RBI strategy attempts to maxi-
mize the overlap of visual attention shifts and keyboard responses by
shifting visual attention to another task if consecutive key presses are
needed for a response to the currently attended task and shifts of vi-
sual attention are not required to determine the correct key response.
This is based on the assumption that if people only need to finish a de-
termined sequence of motor actions to complete the current task, then
visual attention can be reallocated to the next task while the response
is completed. The communication task in the lower left corner is the
only task in our environment that meets this criterion of repeated key
presses (multiple presses to change the channel value). So by defi-
nition of the RBI, the model (and people using this strategy) should
switch attention to the next goal while completing a response to the
communication task.

Each strategy elicits a different set of scanpaths and visual fixation
patterns. Based on our strategy definitions, we predict that TBI will
result in the model spending more time fixated on the lower left quad-
rant than RBI, and that RBI may scan between the different quadrants
more frequently than TBI, reflecting more shifts in covert attention.
The scarf plots in Figure 3 illustrate exactly this predicted pattern, with
RBI switching AOIs more frequently than the TBI model.

Animation provides an overview and high-level understanding of
the differences between the embodied eye movements produced by the
two models. Very soon into the playback, it becomes clear that the TBI
model fixates on the continuous object tracking task (upper right quad-
rant, reflected in the darker fixation heat map in that task for TBI in
Figure 3) but fixates on the communication task less frequently, which
is contrary to our original predictions. This might be a result of the
continuously moving target shifting the tracking goal. Consequently,
the model acts like the task is not complete, and it continues to ex-
ecute the tracking while ignoring activity in the other tasks. On the
other hand, the RBI model shows more saccades between quadrants,
but often appears to overshoot the target locations across quadrants and
has to make extra corrective movements. The Module Activity inter-
face reveals additional differences in the underlying processes brought
to bear on the task by the two models. It shows the TBI model re-
cruits more temporal planning (blue bar) and motor (light orange bar)
resources, while the RBI model utilizes more visual resources (bright
pink bar). This information is only observable in the Module Activity
gauge.

6 CONCLUSION

Visual analytics presents a complex task environment for human de-
cision making, and cognitive modelers have begun developing mod-
els for many aspects of visual analytics, including network visualiza-
tion interpretation [18] and graph reading and comprehension [13, 15].
We show that multiple visualization approaches can both capture the
model predictions for eye movements and elucidate key underlying
cognitive mechanisms supporting those eye movements. Extending
the Dashboard to include human eye movement data would complete
the analytics process. First, by comparing metrics on movements (to-
tal saccades, fixation durations, etc.) between the model and human
behavior, we can test a model’s ability to capture human eye track-
ing performance. Then the Model Visualization Dashboard provides
the tools for inferring the mechanisms underlying the observed human
performance. The animation can further show the model eye move-
ments next to the actual eye movements, validating or refuting the
predictions made by the model. Thus, visualizing formal cognitive
models provides the capability to make the complete set of desired
inferences from eye tracking data about the efficacy of visual informa-
tion processing.
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