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Activity Start Duration Transcript Eye tracking/
interaction

1 00:00 00:55 Let’s first get an overview… 
I scroll through all data 
from top to bottom and 
scan for patterns and 
outliers  ….

2 00:55 00:23 Oh, that’s strange… I need 
to analyze this in more 
detail

3 01:18 00:37 …

Screen recording

Details

Fig. 1. Illustration of our approach to analyze transcribed recordings of user studies (e.g., based on think-aloud protocols): we
integrate word-sized eye tracking and interaction visualizations into a tabular representation of the transcript and provide screen
recordings and enlarged visualizations on demand.

Abstract—In user studies, eye tracking is often used in combination with other recordings, such as think-aloud protocols. However,
it is difficult to analyze both the eye tracking data and transcribed recordings together because of a missing data alignment and
integration. We suggest the use of word-sized eye tracking visualizations to augment the transcript with important events that occurred
concurrently to the transcribed activities. We explore the design space of such graphics by discussing how existing eye tracking
visualizations can be scaled down to word size. The suggested visualizations can optionally be combined with other event-based
data such as interaction logs. We demonstrate our concept by implementing a prototype analysis tool.

Index Terms—Think aloud, eye tracking, interaction, visualization, sparklines.

1 INTRODUCTION

Eye tracking data recorded in user studies is commonly analyzed us-
ing statistical methods. Visualizations depicting the data complements
these methods by supporting more exploratory analysis and providing
deeper insights into the data. Visualization research nowadays provide
a body of techniques to visually represent the spatial and temporal
dimensions of the recorded eye movements [7]. Eye tracking data,
however, is only one of many data streams—such as video, audio, and
interactions—that are usually recorded during an experiment. For in-
stance, when applying a think-aloud protocol, a transcript of the oral
statements is a particularly rich source that could explain the behavior
of the participant on a higher level. To support an analyst to lever-
age the full potential of the recordings, it is important to integrate all
streams of information within a single approach.

In this work, we focus on the integration of transcribed state-
ments of individual participants and eye tracking data into a visually
augmented user interface (Figure 1). Unlike other visualization ap-
proaches (Section 2), we handle the transcribed text as a first class en-
tity which we complement with word-sized eye tracking visualizations
in a tabular chronological representation (Section 3). We systemati-
cally explore the design space of these word-sized visualizations, also
known as sparklines [47], for eye tracking data by discussing how
existing eye tracking visualizations can be scaled down to word size
(Section 4). Similar visualizations can be used for representing inter-
action logs; the small size of visualizations allows us to combine mul-
tiple eye tracking and interaction visualizations within a user interface.
We implemented a prototype of the suggested user interface (Figure 1,
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right) as a details-on-demand view for a visual analytics framework
for eye tracking data by Blascheck et al. [6] (Section 5). We see our
main contributions in designing novel word-sized variants of estab-
lished eye tracking visualizations and demonstrating how these can be
leveraged as part of an interactive transcript-focused analysis tool.

2 RELATED WORK

There are various approaches for visualizing eye tracking data as
Blascheck et al. [7] surveyed. Those focusing the analysis to an in-
dividual participant are more closely related to our work, for instance,
approaches that represent the spatial coordinates of fixations and sac-
cades [13, 21, 35] or approaches that abstract this data to fixations
on areas of interest (AOIs) and transitions between those [12, 15, 22,
25, 28, 41]. Also, a number of visualizations of interaction logs have
been investigated, for instance, for interactions of software developers
in IDEs [36], interactions with visualization systems [17, 34, 43], or
provenance information in scientific workflows [23]. However, only
few approaches integrate eye tracking or log visualizations with tran-
scribed experiment recordings: Holsanova [26] connect transcribed
picture descriptions with picture viewing data on a simple timeline
showing both text and events. Franchak et al. [19] extend such a time-
line with other events, in their case, interactions of infants with their
environment. ChronoViz [48] includes a transcript view complement-
ing a separate timeline view of eye tracking data and other event-based
data. Blascheck et al. [6] combine eye tracking and interaction data
in an extended timeline; the transcript is retrievable on demand only
for individual time spans. Our approach, in contrast to these, puts
a greater focus on text and handles eye tracking and interaction data
only as context of the transcript.

A common method for integrating text and visualization—in par-
ticular when the text should not only be a supplement to the
visualization—are word-sized graphics, also called sparklines [47].



They can be integrated in all textual representations, such as natural-
language text [20, 47], tables [47], source code [2, 4], visualiza-
tions [9, 33], or user interfaces [3]. In this paper, we integrate them
into columns of a tabular representation as additional information for
transcribed experiment recordings. Being a kind of scaled-down infor-
mation visualization, sparklines might represent any kind of abstract
data, however, only under restricted space constraints. To the best of
our knowledge, sparklines have not been used so far for representing
eye tracking or interaction log data.

There are also annotation and coding tools for transcribed experi-
ment recordings. In context of psycholinguistics, ELAN [11, 45] sup-
ports the analysis of orthographic and phonetic transcriptions. Another
tool for linguistic analysis of spoken text is ANVIL [29]. It allows the
integration of multimodal audiovisual material and was later extended
to include spatiotemporal information of videos [30] and motion cap-
turing [31]. None of these tools, however, supports the analysis of eye
tracking and interaction data along with the text.

3 SETTING

Our goal is to provide an analysis tool that enriches a transcribed ex-
periment recording (e.g., from a think-aloud protocol) with eye track-
ing information. We focus on analyzing a single participant at a time,
for instance, as part of a data exploration step or a systematic cod-
ing of performed activities. The integrated visualization, in addition
to text, should enable the analyst to make informed data analysis and
coding decisions without having to switch between multiple tools or
visualizations.

We assume that a transcript is divided into activities having a pre-
cise start and end time. The stimulus used in an experiment can either
be static or dynamic. In the dynamic case, we want to be flexible
enough to support video stimuli as well as interactively changeable
stimuli such as user interfaces. A visual encoding of interaction logs
is a secondary goal for our approach. Interaction events typically carry
a timestamp when a participant triggered them, a spatial position that
describes their location, and can be classified into different abstract
categories such as selection, encoding, navigation, etc.

The eye tracking data consists of a sequence of fixations with spatial
coordinates as well as start and end times; saccades describe quick eye
movements between individual fixations. Some of the visualizations
discussed in the following require that a stimulus has been annotated
with areas of interest (AOIs), summarizing sets of fixations into spatial
groups. Individual transitions between AOIs can be considered as a
graph, either aggregated over time as a static graph or reflecting the
temporal order of transitions as a dynamic graph [12].

Our solution as outlined in Figure 1 (right) is based on represent-
ing the transcript in a table, showing one activity per line in chrono-
logical order. Besides a column containing the actual transcript text,
additional columns provide context about timing, eye tracking, and
interaction events that happened during the respective activity. Since
the tabular representation does not allow us to integrate large visu-
alizations, we use word-sized eye tracking visualizations. Due to the
division of time into short activities, each sparkline only needs to show
a small amount of data. As an additional help to make the visualiza-
tions more readable, a larger version of each word-sized graphics is
retrievable on demand as part of a sidebar. The sidebar also allows
us to show the recorded video stream of a specific activity, with eye
tracking and interaction data potentially overlaid.

4 WORD-SIZED EYE TRACKING VISUALIZATIONS

A central element of our approach is the representation of eye tracking
data as word-sized visualizations. Since many approaches already ex-
ist for visualizing this data in normal-sized graphics [7], we take these
as a starting point for developing word-sized variants showing similar
data. This transformation usually requires one to simplify the visual-
ization approach: in particular, one cannot, or at least should not, label
visual objects with text, use thin lines or border lines for objects, waste
space by separating objects using white space, or show 3D graphics.
Moreover, a sparkline—like a word—usually has a panorama format,

Table 1. Design space of word-sized eye tracking visualizations.

Visualization Data Encoding X-Axis Y-Axis Color Ref.

Point-Based Visualizations

P1 Space Lines X Y – [24, 38]

P2 Space Cells X Y Dur. [24, 35]

P3 Space Bars X or Y Freq. Dur.

P4 Space-time Cells Time X or Y Dur. [21, 49]

P5 Space-time Lines X Y Time

P6 Space-time Arcs X or Y Direct. Time [13]

AOI-Based Visualizations

A1 AOI statistics Bars Freq./Dur. AOI AOI

A2 AOI seq. Columns Events – AOI [24]

A3 AOI seq. Boxes Events AOI AOI

A4 AOI seq. Boxes Events AOI Dur. [41]

A5 AOI seq. Boxes Time AOI AOI [15, 28]

A6 AOI trans. Arcs AOI Direct. Freq. [37]

A7 AOI trans. Lines AOI Direct. Freq. [12]

A8 AOI trans. Cells AOI AOI Freq. [22]

Legend: seq.–sequences; trans.–transitions; freq.–frequency; dur.–duration; direct.–direction; ref.–references.

being limited to the line height of the text but having some space on
the horizontal axis.

To explore the design space of those visualizations in a systematic
way, we analyze all eye tracking visualization techniques Blascheck
et al. [7, Table 1] surveyed and try to transfer each approach to a
word-sized visualization. Since we only target at visualizing the data
recorded for a single participant, we exclude all visualizations focus-
ing on comparing or aggregating multiple participants. Further, we
are not able to suggest meaningful word-sized variants of some tech-
niques, in particular, because of the use of 3D views [1, 18, 32, 39],
the original stimulus [16, 27, 42] (the stimulus usually is too complex
to be represented within a sparkline), circular layouts [8, 27, 40, 44]
(advanced circular layouts are hard to fit to the elongated format of a
sparkline), or a specialization to particular kinds of stimuli [5, 46]. As
a result, we come up with a list of visiualization techniques that can
be adequately transferred to miniaturized graphics. Below, we discuss
all these miniaturized visualization techniques by showing an example
embedded in the text and defining the specific visual encoding in Ta-
ble 1. We furthermore describe the modifications needed when using
the visualizations as word-sized graphics. All visualizations shown in
this section are manually created drafts encoding artificial data. Some
of them are implemented as examples in our prototype analysis tool
(Section 5).

4.1 Point-Based Visualizations

Each fixation is assigned a coordinate on the stimulus that represents
the estimated location a participant looked at. This information is a
rich data source for interpreting eye movement data, together with du-
rations and saccades between fixations.

Space. Focusing on the spatial part of the data, the standard
representations of eye tracking data are scan paths and heat maps.
Scan path visualizations simply overlay the trajectory of the gaze
onto the stimulus [38], often encoding fixations as circles scaled ac-
cording to their duration [24]. For the word-sized variant, we do
not show the stimulus or fixations, but just plot the trajectory as a
line (P1 ). In contrast, heat maps, also called attention maps,
aggregate fixation durations for spatial coordinates, which are color-
coded and overlaid onto the stimulus [24, 35]. For a word-sized at-
tention map, we suggest to plot a coarsely gridded map [24] into the
sparkline representation and encode the duration in the darkness of the
grid cells (P2 ). As an alternative, we could focus on only



one spatial axis, again encode duration in the color, and use bar charts
to encode another metric, such as the frequency of fixations within
the respective area (P3 ). Spatial information can also be
restricted otherwise to make them representable at small scale, for in-
stance, encoding angles of the trajectory in radial diagrams [21].

Space and Time. The temporal sequence of fixations is also im-
portant for some analysis scenarios. Mapping time to a spatial di-
mension, however, requires the encoding of spatial information to be
limited [21, 49]. For instance, using the longer x-axis as a time-
line, the y-axis could encode one of the spatial coordinates of the
fixations while darkness indicates the distribution of fixation dura-
tions (P4 ). We can also extend scan paths with temporal
information by using the edge color for encoding time (P5 ).
This is similar to Saccade Plots [13] that show saccades (i.e., the jumps
between fixations) at the side of a stimulus. Leaving out the stimulus,
we could use a similar approach within a sparkline plotting a spatial
coordinate on the x-axis and connecting points with arcs according to
observed saccades (P6 )—like in the original approach, arcs
are directed from left to right on top of the axis, whereas arcs in the
opposite direction are below.

4.2 AOI-Based Visualizations
AOIs abstract from the exact location of fixations to semantic regions
on a stimulus, which an analyst usually defines manually. AOIs also
allow us to build a transition graph connecting the AOIs according
to the sequence they were looked at. We assume for the following
visualizations that we have to handle five to ten different AOIs. Due to
the limited size of our visualizations, most of the suggested approaches
do not scale to more AOIs, but according to our experience, ten AOIs
suffice for the majority of application scenarios.

AOI Statistics. One of the most simple AOI-based visualizations
is to depict the frequency or total duration each AOI was fixated, for
instance, in a line or bar chart. Such diagrams can be directly trans-
ferred into word-sized graphics. We decide to use bar charts because
lines are harder to perceive if only little space is available. We use
the y-axis to distinguish AOIs to have more spatial resolution for read-
ing the value from the x-axis and redundantly color-code the AOI to
improve the discernibility of the bars (A1 ).

AOI Sequences. The temporal sequence of viewed AOIs re-
veals, on the one hand, what a participant saw and, on the other hand,
in which order. This sequence of AOIs might be visually encoded in
any list representation showing, for instance, the logical temporal se-
quence of events from left to right. This has been done in various
eye tracking visualizations, for instance, connecting subsequent AOI
fixations by lines and encoding the AOI fixation durations in node
sizes [41] or in the horizontal length of a line [28]. In a sparkline,
the sequence is easily visualized as a sequence of blocks each rep-
resenting an AOI event. The different AOIs might be discerned by
color (A2 ) or redundantly as a combination of position and
color (A3 ). When the duration of each AOI fixation is of
importance, it can be encoded in the darkness of the boxes in case the
position encoding is used for discerning AOIs (A4 ) or a lin-
ear timeline can be employed scaling the width of the boxes according
to the elapsed time (A5 ) [15, 28].

AOI Transitions. Transitions between AOIs might also be de-
picted as a graph with AOIs as nodes, and aggregated transition fre-
quencies as weighted links [28]. Considering the temporal dimension
of the data as well, the aggregated static graph becomes dynamic and
might be visualized by animation- or timeline-based dynamic graph
visualization approaches [12]. Graphs are, however, difficult to repre-
sent as a sparkline because nodes and links require a certain amount
of 2D space to be discernible. Arranging the nodes in only one di-
mension simplifies the problem: like in ArcTrees [37], we draw nodes
on a vertical axis connected by arcs (A6 ). A more scalable
variant is the Parallel Edge Splatting approach [14], which was al-
ready applied to AOI transitions graphs [12]: the graph is interpreted
as a bipartite graph duplicating the AOIs to two horizontal axes; all
transitions are drawn as straight lines connecting a source AOI at the

top to a target AOI at the bottom (A7 ). Furthermore, ma-
trix representations of graphs are space-efficient and have already been
employed to represent eye tracking data [22]. A transformation into a
sparkline is straightforward, for instance, color-coding the AOIs (first
row and column) in addition to the transition weights within the matrix
cells (A8 ). A limitation, however, is that they are inherently
quadratic—although they can be stretched to fill an arbitrary rectangle,
additional vertical space does not necessarily improve their readability.

4.3 Combination and Extension
The suggested visualizations provide a flexible framework for encod-
ing eye tracking data. To decide between the different encodings is
not an either–or decision because visualizations can be combined with
each other to build an even more expressive analysis tool. Moreover,
the framework of visualizations might be extended with only little
adaption to also depict interaction data.

Juxtaposing Visualizations. Since word-sized visualizations are
space-efficient, they can easily be juxtaposed within one line, each
graphic providing a different perspective onto the data. For instance, it
could be useful to combine a point-based and an AOI-based visualiza-
tion: . If the application scenario allows the use of
several lines en bloc, a vertical stacking of the sparklines (i.e., placing
them on top of each other) is possible. To align both visualizations,
the x-axes should have the same encoding, for example, a color-coded
sequence of AOIs combined with a duration encoding:

Interaction Data. Interaction data shares characteristics to eye
tracking data: Much like fixations, interactions are temporal events
on the same experiment time dimension. They can be classified ac-
cording to their type into categories or assigned to AOIs based on their
location. Also, transitions between interactions might be derived from
the sequence of logged events. One difference, however, is that usu-
ally interaction events do not have a duration; they only get a tempo-
ral dimension if they are abstracted to longer sequences of semanti-
cally linked interactions. The general similarity between the two data
streams now allows us to reuse most of the suggested word-sized eye
tracking visualizations for interaction data. Furthermore, the discussed
horizontal and vertical juxtaposition of these sparklines provides an
easy way of integrating both data sources within one user interface.

5 PROTOTYPE IMPLEMENTATION

We implemented the approach as a detail view of a larger visual analy-
sis framework for eye tracking studies [6]. The visual analysis frame-
work is intended to analyze eye tracking and interaction data together.
In the original implementation, think-aloud data was added to enrich
the other two data sources. In the new detail view, in contrast, we
intend to present the think-aloud protocol in detail and enrich it with
eye tracking and interaction data. This prototype is a proof of concept
implementing two AOI-based and two point-based versions of word-
sized visualizations.

Figure 2 shows a screenshot of our prototype, depicting data of one
participant in a temporal order. A tabular view represents the main
part of the prototype. For each verbal statement, word-sized visualiza-
tions are shown, in one column the two point-based visualizations, in
another the two AOI-based ones. In both columns, the visualizations
for eye movements and interactions are juxtaposed vertically, showing
the eye tracking visualization above the interaction visualization.

The point-based visualizations are gridded attention maps (Table 1,
P2 ) or, respectively, maps showing the spatial distribution
of interactions. We divided the stimulus into 25 columns and five rows.
For each cell, we counted the fixation durations and the count of inter-
actions and color-coded the cells accordingly. The color coding was
obtained from ColorBrewer [10], using a sequential, single-hue blue
color and a gradation of four (fixation duration ≤ 10 ms, ≤ 100 ms,
≤ 1000 ms, and > 1000 ms; interaction count ≤ 1, ≤ 3, ≤ 5, and > 5).

Our AOI-based visualizations (Table 1, A4 ) represent
each AOI as a row of rectangles. Since only one AOI is active at a



Fig. 2. Screenshot of the prototype implementation of our approach that shows the think-aloud protocol in a tabular fashion, containing an activity
ID, start time and duration, a transcript of the audio recording, a category, and point-based as well as AOI-based word-sized visualizations for eye
movements (top) and interactions (bottom). The sidebar provides a video replay of an enriched stimulus and enlarged word-sized visualizations of
a selected activity.

time, we assign a height to each rectangle greater than the row height
to increase the size of the rectangles (which improves color percep-
tion). In the eye tracking visualization at the top, for each individual
AOI fixation, the duration is calculated and the AOI rectangle is col-
ored based on the duration. We chose a sequential, single-hue gray
color scale and a logarithmic gradation of four (AOI fixation duration
≤ 10 ms, ≤ 100 ms, ≤ 1000 ms, and > 1000 ms). For the visualiza-
tion of interaction data below, interactions are assigned to AOIs and
the color is determined by the categorical interaction category. For
example, an interaction from the category encode is shown in red, a
select interaction in light blue, and a navigate interaction in purple.
The interactions are temporally aligned with the AOI fixations, thus,
representing interactions at the point in time of its corresponding AOI
fixation.

Based on the eye movement and interaction data depicted in the
word-sized visualizations, an analyst adds categories to the activities.
Additionally, rows and columns might be reordered. On the right side
of the prototype, a video playback is shown for further reference. The
playback might be combined with an animated representation of the
eye tracking or interaction data, in our case, a dynamic scanpath over-
lay retrieved from Tobii Studio. Below the video, the visualizations of
a selected row are shown enlarged and annotated with labels.

For a small use case example, we re-analyzed data from a user study
testing a visual text analysis tool [6] (participant 15, transcript trans-
lated from German to English). We first explore the data trying to
get an overview. We find that in the point-based visualization at the
beginning most of the fixations are in the upper part of the stimulus
(Activities 1 , 2, 3, 5), whereas later, most of the fixations
are in the lower part of the stimulus (Activities 13, 14, 15 ).
In the AOI-based sparkline, it becomes apparent that, at the beginning,
the participant used mostly encode and select interactions in the first
two AOIs (Activities 1, 2 , 3, 4, 5, 6) while focusing
mostly in AOI 1 and 2 . At the end, the participant used
more navigate interactions (Activities 8, 9 , 10, 12) and
was looking at AOIs 4 and 5 more often . These kinds
of analysis allows us to classify the participant’s activities and manu-
ally assign categories in the respective table column (Figure 2).

6 CONCLUSION AND FUTURE WORK

With a focus on analyzing the transcribed experiment recording of a
single participant, we suggested a novel approach to visually enrich
the textual representation of a transcript with eye tracking and inter-
action data. This data is represented in word-sized visualizations that
provide different perspectives onto the data. We systematically ex-
plored the design space of word-sized eye tracking visualizations and
prototypically implemented the approach as a detail view of a larger
visual analysis framework for eye tracking studies.

Since our implementation is work in progress, it only partly cov-
ers the suggested visualizations yet, still lacks important interactive
features, and only provides rudimentary support for coding. We will
extend the implementation toward a full-fledged visual analysis and
coding system. Moreover, we want to explore which of the suggested
visualizations is most effective and efficient for analyzing the data and
at the same time easy to understand for potential users. Beyond that,
we are interested in exploring other application scenarios for the sug-
gested visualizations, for instance, their use to communicate results of
eye tracking studies in scientific publications.
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