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Abstract—Understanding the relationship between where people look and where people reach has implications for the designs of
interactive visualizations, particularly for applications involving touch screens. We present a new Visual-Motor Analytics Dashboard
for the joint study of eye movement and hand/finger movement data. Our Dashboard combines real-time playback of gaze and
finger-dragging behavior together with statistical models for the dynamics profiles. To aid in visualization and inference with these
data, we introduce Gaussian process models in order to capture the similarities and differences between eye and finger movements,
while providing a statistical model of the observed data. Smooth estimates of the dynamics are included in the Dashboard to enable
visual-analytic exploration of visual-motor behaviors under differing task difficulty conditions.

Index Terms—Eye tracking, Fitts’ Law, Gaussian process models, Information processing efficiency, Visual-motor processing.

1 INTRODUCTION

Development of effective interactive visualizations for touch screens
requires an understanding of the ways the visual features and interac-
tion difficulty influence both eye movements and finger movements.
Evaluating the efficacy of design choices for interactive visualization
requires an understanding of how those choices influence the cogni-
tive processes supporting the visual analytics process and how those
processes manifest in measurable behaviors [8]. Toward this end, the
present work developed a Visual-Motor Visualization Dashboard in
which we can jointly examine the timing, trajectories, and dynamics
of hand/finger (motor) and eye movements. The purpose of the Dash-
board is to facilitate exploration of two key questions about eye-hand
interactions: (1) When executing a touch screen movement, do you
look at your finger or do you look where you want your finger to go?
and (2) Under what task constraints do finger and eye movements look
similar or deviate?

Our approach is based on visualizing raw movement data and tradi-
tional summary statistics together with Gaussian process (GP) models
for estimates of position, velocity, and acceleration values and uncer-
tainty. Previous work on visualizing eye-hand coordination has pro-
vided some means of plotting the x-y position over time of eye fixa-
tions and mouse locations on a screen using space-time cubes [2, 3, 7]
or utilizing traditional fixation heat maps. Both of those approaches
have emphasized position and fixation duration. We developed the
Dashboard to capture those previously explored properties of move-
ment trajectories and augment them with visualizations of velocity and
acceleration estimates in a single visualization platform. In addition to
estimating the position, velocity and acceleration for visualization pur-
poses, our approach yields estimates of the uncertainty in each of those
those measures. Our approach models both eye and finger movements
in a common statistical framework that allows for direct comparison
of their behavioral profiles in order to address our key question about
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the relationship between each of those trajectories.

2 SAMPLE VISUAL-MOTOR INTERACTION DATA

We used a basic target dragging task representative of all touch screen
interactions that involve dragging icons between positions as a test
data set to explore the GP models and the Dashboard. In this data set,
target size and distance were manipulated in order to vary the visual
properties and physical constraints on the motor demands. The task
was chosen so that it should not require any complex visual search
or decision-making, instead emphasizing the eye-finger coordination
dynamics.

2.1 Equipment
The dragging task was performed on an 82-inch, wall-mounted,
rear-projection Perceptive Pixel-brand touchscreen (native resolution
4096× 2400 horizontal by vertical pixels, 60 Hz refresh rate). The
Perceptive Pixel recorded touch inputs with Frustrated Total Internal
Reflection [5]. Screen touch calibration was performed with the na-
tive software calibration routine. The task was programmed in Python
with Kivy library version 1.8.0 and run with the Anaconda Scientific
Python Distribution 1.9.1.

Eye tracking data were collected with the Tobii Glasses 2 Version
1.0.2. This system records a 160 degree horizontal and 70 degree ver-
tical field of view at 50 Hz following a one point calibration procedure.
A wide angle camera (1920 x 1080 pixels, 25 Hz) mounted between
the lenses, centered on the observer’s nose bridge, recorded the user’s
scene view. The glasses record the eye gaze fixation point using 4 IR
cameras, two left and two right, mounted in the lens frame below the
eyes. Gaze point data was mapped onto a two dimensional image of
the touch screen using Tobii Glasses Analysis Software Version 1.0.

2.2 Visual-Motor Tasks
Eye tracking and finger movement performance were recorded during
a predictable target dragging task, designed to be similar to the stan-
dardized multidirectional tapping task suggested for pointing device
evaluation [11]. In a block of trials, users had to drag a finger along
the touch screen between circular start and end targets. The config-
uration of all 25 targets for a block is shown in Figure 1a; the same
configuration and target order was used on each block. Blocks dif-
fered in the width of the targets (possible values 64, 128, 192, 256
pixels) and the distance between the targets (or the diameter of the cir-
cular configuration; possible values 128, 512, 1024, 2048 pixels; see
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Fig. 1: (a) The configuration of all targets for the dragging tasks. Each
target is numbered according to the order in which it appears in the
sequence, starting with 1 at the top. Arrows indicate the progression
of the first three trials. (b) Illustration of the width (W) and distance
(D) between targets on a single trial. The white circle is the start target
and the black circle is the end target. Dragging movement always
moves from white to black target, as indicated by the direction of the
arrow.

Figure 1b). Target positions were predictable but some target distances
were larger than the user’s field of view and required looking across
the screen to locate the target. Users were instructed to always perform
the task accurately but dragging paths were not constrained.

According to Fitts’ Law, the width and distance parameters define
an index of difficulty for each block; computed as ID = log2

( D
W +1

)
[4]. Smaller targets that are further apart are more difficult to drag ac-
curately than larger, closer together targets. Data from this task can be
used to examine if finger and eye movement dynamics are influenced
by the index of difficulty for a block, or by width or distance alone.

3 VISUAL-MOTOR ANALYTICS DASHBOARD

Figure 2 shows a screenshot of the Visual-Motor Analytics Dashboard.
It contains a series of gauges displaying different aspects of the time
series data from task performance together with model estimates of
performance dynamics and summary analytics resulting from two ad-
ditional cognitively relevant statistical models. Combined models and
frame-by-frame playback enable in-depth review of a user’s overt be-
haviors during task performance.

The Dashboard visualizes and replays data stored in CSV files,
which may be raw recordings or pre-processed outside the Dash-
board. The Dashboard interface is a web-browser application written
in Node.js using common web languages, such as HTML and CSS,
and JavaScript libraries (e.g., D3 [1]) to capture different data types

within customizable dynamic gauges. We incorporated gauges for re-
playing motor trajectories, eye fixations, and saccadic eye movements,
together with model-based analyses explained in subsequent sections.
We also incorporate the eye tracker’s scene camera video recording in
the upper right. The modular design of the gauges means they are eas-
ily exchanged for other models or desired analyses. All time-series
data are synced according to the timeline of the experiment itself.
Playback controls and a block-by-block timeline are presented at the
top for analyst-driven replay. The timeline includes both the blocks of
the tasks (blue colors) as well as the between-block rest periods (or-
ange). During the between-block rests, no touch data was recorded but
the eye tracker continued recording. The variations in the blue color
are according to the index of difficulty for the given task, with the
easier blocks being lighter and the more difficult blocks being darker.

The center Target Plot gauge gives an animation of the task overlaid
with both finger and eye movement data. The targets for the task are
shown as the circular configuration of light gray circles. These vary
between the blocks scaled to the actual targets in the task, appearing
similar to the user’s view in the upper right scene video. Finger drag-
ging movements are shown as a blue trace line; the green-blue circle at
the head of the line shows the current finger position. The color of the
line is graded according to velocity, with brighter greens correspond-
ing to faster speeds, and darker blues corresponding to slower speeds.
Similarly, saccadic eye movements are shown in the red-yellow trace
lines. The foveal area is given by the yellow circle, centered at the
head of the eye trace line. Again, the line color is graded according
to velocity, with darker red being slower speeds and brighter orange-
yellow being faster speeds. The Target Plot contains an optional eye
fixation heat map overlay, which can be toggled on/off. The fixation
heat map is colored according to the length of fixation in any position
on a green-to-red scale, with green being short fixations and red being
longer. The heat map is reset for each block of trials.

To the right and left of the Target Plot gauge, we include phase-
space gauges to capture the full position, velocity, and acceleration
dynamics in path-to-target coordinates based on GP models of the fin-
ger and eye movement data. The Target-Referenced Finger (Eye) Dy-
namics gauges illustrate the profiles for a single trial at a time. The end
position of the trial is given by the dot at the tail of the curves, with
the trace line fading in brightness from the end to the beginning of the
trail (beginning being the least bright). We will return to the patterns
of these plots later after describing the GP models.

Below the Target Plot gauge are three gauges illustrating the raw
dynamics and position data. In each of these gauges, the vertical gray
line indicates “now” in the time series, and the data slide from right
to left over time during playback. The horizontal gray line is the zero
or threshold value for the data presented. The left most gauge is the
Eye-Finger Delta gauge, which illustrates the difference between the
position of the finger and the eye in touch screen coordinates. The lines
are disjoint, because the finger is not always in contact with the screen
(lifted in between trials). The line only has a given position while the
finger is actively touching the screen. The horizontal threshold is set
to 64 pixels, and lines dropping below threshold occur when the eye
and finger are within 64 pixels of each other. These data often show a
“v” shape, where the finger and eye move apart, then closer, and then
apart during a single target-dragging movement.

The Target Delta for Completed Trials (center gauge) shows two
lines tracking the distance between each of the finger (blue) and eye
fixation (orange) and the current target (horizontal threshold). Over
time, these data generally show a larger delta at the beginning of the
trial, and delta decreases as the eye and finger move toward the target
location. What is highlighted well in this data is the pattern of the
eye moving toward the target before the finger and that the slope of
the eye movement is often steeper (faster saccadic movement) than
the finger. The eye data is continuous, with the sharp rising slopes
occurring when the target position changes in the tasks. The finger
data continue to be disjoint, reflecting the finger lifted from the screen
between movements.

Third, the right tile shows the Finger Velocity gauge, giving the raw
velocity of the finger in both the X (blue) and Y (orange) dimensions.



Fig. 2: Visual-Motor Dashboard for combined eye and finger movement data. The central gauge illustrates the target configuration for a given
block overlaid with finger paths (blue lines), eye scanpaths (yellow-red lines), and a fixation heat map. The remaining plots capture various
aspects of movement dynamics which are summarized in the text.

The horizontal line here is zero velocity. The center of the touchscreen
is position zero in both X (right-left) and Y (up-down) dimensions;
positive velocities are dragging movements up and/or to the right, and
negative curves reflect movements down and/or to the left. Thus, vari-
ations in these lines reflect the direction of the movements and some
natural biomechanics that constrain arm/wrist/finger movements. The
total deviation from zero reflects total speed of the movement and how
that changes from start to end of a trial. Flat blue lines at zero are
vertical movements, and flat orange lines at zero are horizontal drag-
ging movements. Notable in this gauge is relative differences in ve-
locities as people move across their bodies, where biomechanics con-
strain more the larger arm movements for more distant targets. For the
right-handed user shown in the present data, the movements are often
faster from left-to-right than right-to-left (moving toward versus away
from his dominant side). However, not much difference is seen for
different movement types when the targets are close to the screen cen-
ter requiring shorter overall arm movements. Interestingly, the screen
camera shows that in some of the furthest finger movements, the user
does not always turn his head to look at the starting point of the far
movements. Consequently, the head constrains the eye movements to
a smaller overall area and do not mirror the motor dynamics in this
gauge.

In the study of eye-finger movement dynamics in a task where the
targets are constantly changing, the areas of interest (AOIs) are not
fixed on the screen. Rather, the AOIs are the relative position of the
finger and the eye foveal region. We define three key AOIs: eye-finger
in the same location (defined as both being within 64 pixels of each
other), eye leading finger (eye closer to target), and finger leading eye
(finger closer to target). The scarf plot in the Proximity gauge illus-
trates the AOIs over the course of the experiment, similar to plots used

in [10]. In the scarf, same location is coded in green, eye-leading-
finger is coded in orange, and finger-leading-eye is coded in blue. Gray
indicates times when no dragging movements were happening. The
pattern of AOIs is dominated by orange, with the eye leading the fin-
ger most of the time. Second, we see times of green, indicating both
are in the same position, often occurring at the end of the trial when
people may be verifying they correctly reached the end target location.
There are few instances of the finger leading the eye in this data set.

Finally, on the right-hand-side below the scene video, we include
two plots of summary data in order to capture how changes in the task
difficulty influence eye and finger movement behaviors. The Fitts’
Law Regression gauge provides a regression summary of mean data
over the index of difficulty values for the experiment. Currently shown
is a regression model of the mean finger movement times (blue) and
mean eye fixation durations (orange). Regression parameters are sum-
marized in the top, together with Fitts’ Law throughput, which indi-
cates amount of information (defined as bits/second) pushed through
each type of movement system. As the playback progresses, the scat-
terplot points for the current block playing in the other gauges are
highlighted. Other mean summary data, such as mean saccade dura-
tion or length, could also be displayed in these plots.

The Cumulative Hazard Function gauge in the lower right gives
functional data for the same summary values. Finger movement times
are captured in the blue lines, and fixation duration is shown in or-
ange. Darker colors are for higher index of difficulty conditions (more
difficult conditions), and the colors grade to lighter as the index of
difficulty decreases (the task gets easier). The curves for the current
block are again highlighted during replay. These plots illustrate that
changing the difficulty of the target dragging task has the effect of or-
dering entire functions of behavior. Again, we can add distributions of



total numbers of saccade or saccade speed, or other summary data, for
further comparison here.

4 MODELING VISUAL-MOTOR DYNAMICS

To visualize time-series data, particularly the first and second deriva-
tives of the estimated time series, the Dashboard makes use of GP
regression [e.g., 9]. GP models provide smooth estimates of the func-
tional shapes of both the hand and eye movement trajectories along
with an estimate of the uncertainty associated with those estimates.
These models are particularly useful as statistical models for the inter-
polation between observed points in a time series. Under a Bayesian
interpretation of the GP model, the estimate is a posterior distribu-
tion over possible functions that pass through (or near) the observed
points while simultaneously reflecting uncertainty in interpolated time
points. This degree of uncertainty increases with increased distance to
the nearest observed values. We chose to use the GP modeling frame-
work because it allows for the alignment and display of multimodal
information collected from different apparati with unequal sampling
rates using the same fundamental framework. Additionally, the GP
modeling approach can provide estimates of the velocity, acceleration,
jerk, and other higher order derivatives of path information along with
indication of the variability of those estimates.

Formally, the distribution of a GP is uniquely defined by its mean
and covariance function. In practice, the choice of covariance func-
tion dictates properties of the possible estimated paths through the ob-
served data. Much like univariate and multivariate Gaussian random
variables, linear combinations of GPs are also GPs. This means a GP
model of the difference between the finger location time-series and
the gaze-location time-series is implied by the difference between GP
models of the individual time-series data.

The most commonly used covariance function is the radial basis
function cov(s, t) = τ2 exp

(
− (s−t)2

2l2

)
, which we used for both the eye

and finger path data. The radial basis function constrains the paths
to be relatively smooth curves. Although this is sensible for motor
path data, it may be less reasonable for eye trajectory data, which is
more irregular due to microsaccadic movements. To accommodate for
the fact that eye-gaze data includes both small-scale movements (e.g.,
micro-saccades, drift) and large-scale movements, we used a combi-
nation of two radial-basis functions for gaze data. One radial-basis
function was constrained to have a small characteristic length scale,
which means that in small time intervals the location can change dra-
matically. The other radial basis function was constrained to have a
large-length scale, which only accounts for relatively slower changes
in position. To model this combination in the GP framework, we can
simply add the two covariance functions, which is equivalent to mod-
eling the gaze trajectory as a sum of two GPs.

We use a GP model to estimate the velocity and acceleration of the
finger and gaze trajectories, because the derivative of a GP is also a GP.
The covariance function between an GP at time s and the derivative of
the GP at time t ′ is given by the derivative of the covariance function
with respect to its second term. For example, the correlation between
the location at s and the velocity at time t ′ assuming a radial-basis
covariance function is,

cov(s, t ′) =
τ2(s− t ′)

l2 exp
(
− (s− t ′)2

2l2

)
.

The Dashboard illustrates target-relative position, velocity, and ac-
celeration of the mean of the posterior from the GP models fit individ-
ually to each trial and with τ and l fixed within blocks. Eye gauges
are on the right of the Target Plot gauge, and finger gauges are on
the left. Over the course of a block of trials, which contain 26 move-
ments, velocity-by-position and acceleration-by-position phase plots
show the variations in speed against the direction of movement. For
the block depicted in Figure 2, finger velocity shows differences de-
pending on direction across the body, but acceleration is fairly consis-
tent. Eye velocity-by-position does not show this difference. Velocity-
by-acceleration phase plots show consistent variations of speed across

a whole block, illustrated in the constant cycles in the bottom left phase
plane gauges.

As the task or display constraints are varied, GP models will flexi-
bly capture the systematic variations in movement dynamics. For ex-
ample, suppose we add constraints that the user must drag a physical
target and the user must keep the target inside a path or set of guide-
lines. We hypothesize that the eye movements would show smooth
pursuit of the finger and object as they move along the screen, rather
than the single saccade between target locations ahead of the finger
observed in this data. The GP framework can also be used to model
dynamic changes in distance between the point of visual fixation and
the location of the finger on the screen.

5 FUTURE DIRECTIONS

One strength of the Dashboard display framework is the capacity to
display GP models under various covariance assumptions, such as a ra-
tional quadratic or Matérn class, independently or simultaneously for
comparison purposes. Thus, we can leverage the Dashboard playback
for visual comparison of real and model dynamics to determine best
models, not just fit statistics. An additional set of Eye Dynamics plots
might be added to highlight the microsaccadic movements at a differ-
ent scale than the saccade scale currently shown. We might also con-
sider adding uncertainty bounds on the estimated values here, for the
full statistical model. Additionally, the GP models implemented in the
Dashboard provide parameter estimates needed to populate computa-
tional human cognition and motor control models. For example, the
velocity and acceleration from the GP model are needed in the bang-
bang model of human control theory. This model posits that motor
actions follow a trajectory of maximum acceleration in the direction
of the target up to the midpoint, then maximum deceleration to come
to a complete stop at the target [6]. By populating this model with es-
timates derived in the Dashboard, it can simulate realistic behavior for
novel visual-motor interaction situations. These model predictions can
be incorporated into our current Dashboard for streamlined evaluation
of the model predictions in the same gauges as real human data.

The interaction of visual and motor systems is known to have mea-
surable effects on human performance, and even in the small sample
shown here, we can observe strong differences in control dynamics
based on the difficulty of this simple visual dragging task. In future
task applications, the Dashboard enables consistent visualizations and
statistical interpretations of visual and motor dynamics as both the vi-
sual objects and types of interaction are varied. This is critical for
developing maximally effective and efficient interactive information
visualizations.
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