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Abstract—Many important and vital tasks entail dynamic decision making over prolonged periods of time in situations where
“even hesitating requires a decision to hesitate” [1]. Although many such tasks are difficult to study without interfering or mod-
ifying, there is a category of these tasks, namely video games, which can be brought into the lab without harm to persons or to
realism. In this report, we find significant differences in gaze transition probabilities between expert and novice Tetris™ players and
present a novel visualization for two sets of transitions that suggest strategy differences in how the game is played.

Index Terms—Expertise, Tetris, Regions of Interest, ROI, AOI, fixations, saccades

1 Introduction

We study expertise in tasks requiring real-time human inter-
action with dynamic task environments – tasks entailing the
integration of cognition, perception, and action where “even
hesitating requires a decision to hesitate” [1]. Unfortunately,
many such tasks, for example, air traffic control, laparoscopic
surgery, driving a car, are difficult to study without interfer-
ing or modifying the task, or even dangerous to study un-
der real conditions. Fortunately, there is a category of these
tasks; namely, video games, which can be brought into the
lab without harm to persons or to realism.

Here we focus on the video game Tetris™. Although easy to
learn, it is diffcult to master. Although a task which people
play in the real-world, it is easy to bring into the laboratory
[e.g., see 3].

Our past research on Tetris has examined complementary
actions [4] [aka epistemic actions, 5]. Our current work uses
AI agents to help us understand how different solutions to
placing one Tetris piece (i.e., zoid) on the same board can
vary in goodness [6], [7], whether player expertise can be
predicted based on where players place their first 2, first 10,
first 100, or all zoids of a game [8], [9], and whether experts
and novices differ in their patterns of gaze transitions from
one region of interest (dynamic or static ROIs) to another.

Here we present our first, albeit short, paper on the latter
topic; namely, whether differences in expert versus novice
strategies can be revealed by eye transition data. The work
presented here is based on:

• 34,589 fixations from 4 games of Tetris for 10 Novices
and 10 Experts (where the fixation count excludes suc-
cessive fixations to the same ROI).

• A base model which assumes that the probability of a
transition between two ROIs simply reflect the probabil-
ities that an ROI is fixated.

• A log-linear analyses which tests and rejects that base
model.

As the base model is rejected, in this short report, we pro-
vide two examples in which Novices and Experts differ in
their patterns of transitions.

A Challenge to Cognitive Science Although Tetris is a sim-
ple game played by millions, when we look at Tetris what we
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Fig. 1 – The Tetris pieces are called zoids. Each zoid
is composed of four square blocks. There are seven (7)
different zoids which are commonly called the: I, Square,
T, J, L, Z, and S.

see presents a challenge to Cognitive Science. First, the cog-
nitive control required to excel at Tetris requires switching
among substeps to: (a) monitor, (b) guide, and (c) place
the current zoid, while (d) planning the placement of the
next zoid. Second, the actions that we see for the current
zoid suggest the: (a) dynamic adjustment of placement
plans, (b) a continual evaluation of the pile, (c) and some
sense that our experts have that we do not yet have of
strategic goals and tactics for Tetris. Hence, we turn to de-
tailed analyses of fixation transitions to gain some insight
as to how these challenges might be addressed by cognitive
theory.

A Very Short History of Research on Gaze Transitions The
transition of gaze fixations between various regions of inter-
est (ROIs) has been researched at least since Fitts, Jones,
and Milton [10] famous studies of fighter pilots during the
Korean War era. Our approach to the analysis of transi-
tion frequencies has a less ancient but still old foundation in
the pioneering work of Ellis and Stark [11] who applied χ2

analyses to determine if the number of transitions between
various ROIs were simply proportional to the number of fix-
ations to each ROIs. Our use of log-linear analyses follows
the more modern recommendations of Holmqvist, Nyström,
Andersson, et al. [12]. In contrast to the χ2, for each cell of
our “from–to” table, the log-linear analysis provides us with
the adjusted residuals expressed as z-scores. In standard sta-
tistical analyses, a z-score of ±1.96 is considered to show a
two-sided significance at the p < 0.05 level. For the results
shown here, we highlight z-scores with a two-sided signifi-
cance of p < 0.001; namely, those with z-scores greater than
±3.3.

2 Methodology

All eye data reported here were collected on an SMI 500
Red™ at 500 hz and were processed using the GazeTool
package [2]. All players were individually run and all had
prior experience with Tetris. All used MetaT [3], which
logged and timestamped all system and user events, to play
Tetris for an hour as the first session of a longer study.



Table 1 – A two-event transition matrix showing similarities and differences between Expert (top half) and Novices
(bottom half) in shifts of attention from ROI “A” to ROI “B.” The numbers represent significance values in terms of
their z-score. For example a z > 1.96 represents a two-sided probability of p < 0.05 of finding that value by chance. The
table highlights z-scores which are greater (green) or less (brown) than ±3.3. The two-sided probability of finding such
differences by chance would be p < .001.
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Fig. 2 – Criterial Score for each of the 10 Expert and
10 Novice Players. The criterion score is the mean of
the highest 4 games played during the first hour of a
Tetris study. Players in the Intermediate group were
excluded so as to widen the contrast between Experts
and Novices.

To rate player expertise, we averaged the score of the four
highest games played in our lab in a one-hour session. This
number is the criteria score for each player. We applied the
ddendro algorithm [13] to the criteria score to classify play-
ers into 8 groups. The top three players were enough dif-
ferent from our Expert players as to be in a separate group
but as three did not seem sufficient for a sample, we exclude
them from the current analyses and focus here on our 10 ex-
pert and 10 novice players. The jump between the lowest
expert and highest novice, shown in Figure 2, was occupied
by our intermediate players.

2.1 ROIs

We used the dynamic ROI (dROI) feature of GazeTools [2]
to assign fixations to one of six regions of interest (see the
labeled ROIs in Figures 3 and 4): Preview Box (PBox),
BTW (the area between the Zoid and the Pile), Zoid, Cur-
Dest, NextDest, and Pile). Fixations to other areas were few
and were excluded from the current analysis.

Each Tetris episode entails the movement and placement of
one zoid (one of 7 possible Tetris shapes, see Figure 1). Dur-
ing the episode only the zoid is dynamic. However, on each
episode the zoid ends up in one spot – the current destina-
tion or “CurDest” – dependent on the twin factors of “op-
portunity” and “choice”. This terminal spot, the CurDest,
is also a dROI as it varies from episode to episode. Likewise,
on each episode the zoid that will be placed during the next
episode appears in the aptly named “Preview Box”. The
spot where this next piece is placed, on the next episode,
is also a dROI which we refer to as the next destination or
“NextDest”.
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Fig. 3 – To the Preview Box – Differences in transition frequency of eye movements made by Expert (a) vs Novice (b)
Tetris Players from other ROIs to the Preview Box. Green transitions are more likely than chance (> +3.3sd), brown
transitions are less likely (< −3.3sd), with the width of the line being proportional to the ± of the sd.
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Fig. 4 – To the zoid – Differences in transition frequency of eye movements made by Expert (a) vs Novice (b) Tetris
Players from other ROI to the zoid Box. Green transitions are more likely than chance (> +3.3sd), brown transitions are
less likely (< −3.3sd), with the width of the line being proportional to the ± of the sd.



3 Results

Our approach to the analysis of transition frequencies was
pioneered by Ellis and Stark [11] who performed χ2 analy-
ses to determine if the found number of transitions exceeded
the number expected by the base model. Our use of log-
linear analyses follows the recommendations of Holmqvist,
Nyström, Andersson, et al. [12]. In contrast to the χ2, for
each cell of our “from–to” table, the log-linear analysis pro-
vides us with the adjusted residuals expressed as a z-score.
In standard statistical analyses, a z-score of ±1.96 is consid-
ered to show a two-sided significance at the p < 0.05 level.
For the results shown here, we highlight z-scores with a two-
sided significance of p < 0.001; namely, those with z-scores
greater than ±3.3.

Table 1 shows the adjusted residuals from a log-linear anal-
ysis of the transition matrix comparing Expert (top) and
Novice (bottom) Tetris players. Left-to-right, each row shows
the transition “from” the ROI on the left-most column “to”
each ROI in column 2-7.
The model uses structural zeros to zero out what would oth-
erwise be self-transitions (i.e., two successive fixations in the
same ROI), as per [12]. The adjusted residuals are reported
as z-scores which become higher or lower than zero to the
extent to which the from-to transitions are higher or lower
than would be expected simply by chance. To be clear, if
Tetris players show no systematicity in their eye transitions,
then we would expect the residual score shown for saccading
from, say, the zoid to the CurDest, would be close to zero.
Although Table 1 is complete, it is less than intuitive when
it comes to “seeing” its implication for expert versus novice
strategy differences. For that task, visualizations such as we
use in Figures 3 and 4 are more helpful.

3.1 Transitions to the Preview Box.

Figure 3 zooms in on the green and brown numbers in Col-
umn 1 of Table 1 to highlight differences in expert versus
novice transitions to the Preview Box. The green arrows for
the experts show that they make transitions from the zoid to
the Preview Box and from the area between the zoid and the
Pile to the Preview Box more than would be expected by
the null hypothesis that transitions are simply proportional
to the number of fixations to a ROI. In contrast, the Novice
plot on the right of Figure 3 suggests that Novices are less
likely to transition from either the CurDest or the NextDest
than would be expected by the null hypothesis.

Our current interpretation of these data is that Experts
make strategic use of the time during which the current zoid
is dropping to gain information about the next zoid so as to
begin planning their next placement. In contrast, Novices
seem to be doing something completely different. As sug-
gested by the absence of green lines from the zoid and the
BTW to the Preview Box, Novices do not use the drop time
for planning but rather to monitor the dropping zoid to en-
sure it ends up in the targeted location. Likewise, the brown
lies from the CurDest and NextDest locations to the Preview
Box, suggest that Novices are less likely than expected to
plan for the next zoid while the current zoid is falling, than
are the Experts.

3.2 Transitions to the zoid.

Figure 4 zooms in on the green and brown numbers in Col-
umn 3 of Table 1 to highlight similarities as well as differ-
ences in expert versus novice transitions to the zoid. As can
be seen in the Figure, both groups are more likely than ex-
pected to transition from the CurDest to the zoid and less
likely than expected to transition from somewheres else in

the Pile to the zoid. These patterns suggest that both ex-
perts and novices tend to visually guide or, at least, monitor
the descent of the zoid to its current destination.

This contrast between more likely than expected (i.e., by our
default hypotheses) transitions from the CurDest to zoid and
less likely than expected transitions from the Pile to the zoid
also supports our decisions to treat the CurDest as its own
ROI and, therefore, distinct from either the Pile or the BTW
regions.

These contrasts highlight the utility of our dROI measure as,
without knowing the regions where the current zoid and the
next zoid are placed, both of those areas would be classified
as part of the BTW area. However, we see that when Cur-
Dest and NextDest are subtracted from the BTW area that
Novices and Experts vary in their likelihood of transition-
ing from the NextDest to the zoid as well as from the BTW
area to the zoid. For the present, however, we will refrain
from over interpreting these data and await the analyses of a
greatly enlarged dataset of Players.

4 Discussion

The results presented here are preliminary but suggestive.
They are preliminary in that we are currently processing a
much large set of data and hope to have four times as many
experts and novices as at present. They are suggestive in
that the differences between experts and novices seem rea-
sonable and seem to support the position that the eye data
are revealing strategic differences in how the two groups ap-
proach Tetris.

5 Summary & Conclusions

Our analysis of eye data is part of a larger effort to study
the acquisition of extreme expertise in a dynamic task en-
tailing real-time decision making. Other parts of this effort
are attempting to classifying differences in moves made by
novices and experts [8], [9], comparison of human players
across their full range of expertise with Artificial Intelligence
models that vary in their higher level goals [6], [14], and in
differential use of complementary actions [4] across the spec-
trum of Tetris expertise.

In the near future, we hope to use eye data to test, under-
stand, and interpret some of the results from these other
parts of our effort. We also plan to focus on differences in
the patterns of eye transitions made by Expert players as
they play through the low levels of Tetris (when the zoids
fall slowly) to reach the higher levels of the game that ex-
pose the limits of their expertise. Although the current short
report has focused on eye transition data, we will also exam-
ine fixation durations and hope to have enough data to pro-
vide a meaningful test of differences in fixation duration in
a ROI as a function of the preceding ROI. Such data might
suggest that the purpose of a fixation on a given ROI varies
as a function of the ROI of the preceding fixation.

Tasks entailing dynamic decision making over prolonged pe-
riods of time provide a challenge to the cognitive science
community to build integrated models of cognitive systems.
They also provide a challenge to trainers to provide train-
ing that takes domain experts beyond plateaus of stable but
suboptimal performance [15], [16] to extreme expertise.
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