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Abstract— This paper presents a method to build a saliency map in a volumetric dataset using 3D eye tracking. Our approach
acquires the saliency information from multiple views of a 3D dataset with an eye tracker and constructs the 3D saliency volume from
the gathered 2D saliency information using a tomographic reconstruction algorithm. Our experiments, on a number of datasets, show
the effectiveness of our approach in identifying salient 3D features that attract user’s attention. The obtained 3D saliency volume
provides importance information and can be used in various applications such as illustrative visualization.

Index Terms—Tomographic reconstruction, Eye Tracking, Saliency, Direct Volume Rendering

1 INTRODUCTION

Direct Volume Rendering (DVR) is commonly used for visualization
of volumetric datasets generated by scanners in biomedical imaging
(e.g. CT/MR) or by simulations in scientific computing. In DVR, a
transfer function is used to classify features by assigning optical prop-
erties (i.e., color and opacity) to the scalar field. The visual appear-
ance of various points along a viewing ray is influenced by local ge-
ometric attributes such as scalar values and its first and higher-order
derivatives. However, as users’ interests might be non-uniformly dis-
tributed spatially over the volume, traditional DVR can be ineffective
in identifying regions of interest. For example, given a rendered im-
age of human feet, doctors may be interested in the details of joints
while non-expert users might be interested in the overall feet struc-
ture. Therefore, it is useful to understand where people focus in the
3D volume visualization and use such information to better highlight
the regions of interest (ROI). In other words, we want to detect the
saliency regions of volume datasets.

In this paper, we introduce an approach to detect the 3D saliency re-
gions for a dataset based on the eye tracking data from multiple view-
ing angles that are assembled in 3D using tomographic reconstruction.
As the eye tracking data is generated in 2D (i.e., image space), we
collect user’s saliency information from multiple projection images of
the volume. Then, we locate the salient regions by constructing the
3D saliency volume from back projection of 2D saliency maps. The
produced 3D map assigns saliency values to the voxels of the original
data, which is useful for various applications such as transfer function
design and illustrative visualization.

2 RELATED WORK

Several approaches have been developed to compute visual saliency
by analyzing the measurements derived from the data without visual
feedback. Itti et al. [4] used an image processing technique, based on
the center surround operators, to calculate the saliency map of a 2D
image. Lee et al. [9] proposed a model of mesh saliency using center-
surround filters with Gaussian-weighted curvatures. Kim et al. [8] pro-
vided an evaluation of the computational model of mesh saliency us-
ing eye tracking data. Other approaches located visual saliency in 3D
space using eye tracking glasses [13, 14, 15]. They strove to estimate
3D gaze fixations based on the ray/object intersection method. The as-
sumption of these approaches is the first object that is hit by the view-
ing ray is the target of the fixation. In contrast, in DVR users might
focus on the interior structure while the viewing rays pass through the
transparent exterior structure. Therefore, the simple ray/object inter-
section method cannot be applied to locate saliency in DVR images.

B. Ma, E. Jain and A. Entezari are with the Department of CISE at the

University of Florida, Gainesville, FL, 32611.

E-mail: {bbo, ejain, entezari}@cise.ufl.edu

Eye tracking has been widely used in graphics and visualization
for implicit data collection from users. Unlike traditional methods
based on mouse clicks that will bring significant burden on interac-
tion, eye tracking enables the analysis of users attention. Santella
et al. [16] used a perceptual model together with eye tracking data
to produce abstracted painterly renderings. Jain et al. [5] used eye
tracking data to track readers’ attention in comic book cartoons and
assess the artist’s success in directing the flow of attention. Burch
et al. conducted experiments to evaluate traditional, orthogonal, and
radial tree diagrams [2]. Participants were asked to find the least com-
mon ancestor of a given set of leaf nodes and eye tracking was used
to record their exploration behavior. Eye tracking was also used in
video re-editing to expose the important parts of the video [6]. Man-
tiuk et al. [12] improved the accuracy of headmounted eyetracker in
3D scenes using both eye tracking data and prior knowledge of the
environment. Instead of tracking in 2D image space, our work adds a
new dimension by enabling the construction of 3D eye tracking pro-
file that can be used for various purposes including saliency detection.
The constructed saliency volume can be directly employed to the iIlus-
trative volume rendering [1, 18] which uses non-photorealistic render-
ing techniques to enhance important features or filter irrelevant details
out. The saliency volume is also useful in other visualization applica-
tions, such as progressive visualization [11] and volume visualization
enhancement [7].

Lu et al. [10] used eye tracking to identify the salient points on
individual isosurfaces from a volume and used it for parameter se-
lection in direct volume rendering. They visualized isosurfaces (with
transparency) to track the user’s attention to various regions on an in-
dividual isosurface while the volume is rotating. Users explore the
features of the volume by selecting different isovalues while viewing
the rotating volume. In this approach, a 3D focus point is identified by
finding the intersection of two rays generated from a pair of fixation
points from two frames corresponding to consecutive viewing angles.
The 3D focus points can be located from fixation points on multiple
consecutive frames if the user maintains viewing at the same 3D po-
sition. While this technique identifies salient regions on individual
isosurfaces, it is challenging to track users attention among different
isosurfaces specially since different isosurfaces are presented at dif-
ferent times during the exploration process. In our approach, we also
collect the eye tracking data while the users view a rotating volume;
however, we use tomographic reconstruction to construct 3D saliency
map, for the entire classified volume, based on the acquired saliency
on each viewing angle. We discuss the basic principles in tomographic
reconstruction in Section 4.

3 SALIENCY INFORMATION ACQUISITION

Since the locating the ROI in a volume could be subjective and vary
among users, we collect saliency information from users using an eye
tracker. We are interested in two types of eye movement: fixations and
saccades. Fixations are eye movements that stabilize the retina over
a static object of interest. Saccades are rapid eye movements used in



Fig. 1. The process of constructing the 3D saliency volume.

repositioning the fovea to a new location in the visual environment [3].
Fixations are the eye movements that best indicate the location of the
viewer’s visual attention, thus identifying the fixations is the key to
finding ROI. As locating the saliency regions in 3D requires additional
information besides the 2D saliency information (i.e., image space),
we leverage the 2D gaze data from multiple viewpoints

Initially, we render the volume (Fig. 1 (a)) based on a pre-defined
transfer function. The transfer function can be specified manually or
obtained from automatic transfer function design techniques [19, 17].
Obviously the choice of transfer function influences what features of
the volume are visualized. Therefore, a proper transfer function is
needed that can reveal the relevant features and details from the vol-
ume. While the choice of transfer influences the visibility of features
and impacts the eye tracking results, currently we assume a proper
transfer function, with semi-transparent features, that reveal the rele-
vant structures is given. We envision our 3D eye tracking system will
be useful in providing feedback to the transfer function process (in-
teractively or off-line). Next, as shown in Fig. 1 (b), we present the
rotating volume to users so that they can freely view the interesting
features. Under each viewpoint, we collect the gaze data which indi-
cate the most attractive regions on the rendered image. The rotation
axis is selected so that the respective projections can best reveal the
features of the data. To collect enough gaze data, we rotate the volume
12 degrees every 4s which yield a set of 2D saliency information from
30 viewpoints (projections).

After the data collection, we analyze the fixations for each 2D pro-
jections image separately. We employ two off-line strategies for dif-
ferent requirement: 1. We analyze the fixations obtained from an indi-
vidual, the gathered saliency information reveals the personal interest
of the volume data. This is useful for a domain expert who knows
the underlining data and desire to explore a particular part of the data.
2. We process the fixations from multiple users. For a volume, the
users general interest is studied, and the regions that catch most of the
attention can be identified. The generated 3D saliency volume can,
in turn, inform the transfer function design in DVR (discuss in Sec-
tion 6). With either strategy, we have collected a set of 2D fixations
that are the sources of our saliency information.

4 SALIENCY VOLUME CONSTRUCTION

Tomography has been widely used in medical (e.g., X-ray CT) and
other scientific fields, including physics, chemistry, astronomy. It al-
lows for the reconstruction of an object from its projections (e.g., shad-
ows). Modern tomography involves gathering projection data via scan-
ning the object from multiple directions using a specific X-ray source.
Then, the original object can be reconstructed by feeding the projec-
tions into tomographic reconstruction algorithms.

Fig. 2 shows an example of tomography that uses parallel beams to
scan a 2D object f (x,y) at a specific direction. For a given angle θ ,
the 1D projection of the 2D object is made up of a set of line integrals
(shown as blue lines). The data collected at the sensor si is the line
integrals of the beam bi which represent the total attenuation of bi as

it travels through the object. pθ (s) is the 1D projection of the 2D
object f (x,y) which is formed by combining a set of line integrals at
angle θ . The extent of pθ (s) is determined by the bounding rectangle
of the object. Mathematically, pθ (s) can be understood as the Radon
transform of f :

pθ (s) =
∫

∞

−∞

∫
∞

−∞

f (x,y)δ (xcosθ + ysinθ − s)dxdy (1)

From Fourier slice-projection theorem, we can reconstruct the orig-
inal object f (x,y) if we have projections pθ (s) for many angles. The
reconstruction is done by inverting the transformation in Eq (1) known
as inverse Radon transform. In practice, a set of projections pθ (s)
from a finite set of directions can be obtained as outputs from a scan-
ner where a rotating object is being scanned. These projections serve
as the input for the tomographic reconstruction algorithms, such as
filtered back projection and iterative reconstruction algorithms, that
compute the inverse Radon transform and approximate the absorption
density of the original object.

Fig. 2. Parallel beam tomography. Each projection is made up of the
set of line integrals through the object

In our data acquisition process, we track the users viewing a rotat-
ing volume which is similar to the tomographic scan where rays are
used to scan a rotating object. The saliency information are recorded
as fixations in the rendered images that are generated from parallel
projections of the volume. Therefore, the 2D saliency map in the
image space can be back projected, for each projection angle, as the
tomographic scans under parallel beam geometry. Once we collect
the gaze data for a particular angle, we build the 2D saliency infor-
mation for that angle which is then back projected to the 3D volume
in the tomographic reconstruction algorithm. In our method, we use
the commonly-used filtered-back-projection (FBP) to construct the 3D
saliency volume from a set of 2D saliency maps. The FBP algorithm
filters (i.e., Ram-Lak filter) each projection image before back projec-
tion – compensating for the concentration of information (samples) in



(a) Projection at angle 0◦ (b) Projection at angle 120◦ (c) Projection at angle 192◦ (d) Projection at angle 252◦

Fig. 3. Plot the fixation locations on the respective 2D projection images. The original images are 1920× 1080. The images shown here are
zoomed in to see the fixations.

the center of the volume where all projections intersect and the lack of
information away from the center. More accurate reconstructions can
be obtained by using more projections that, in turn, increase the ac-
quisition time. The necessary number of projection angles depend on
the complexity of the 3D image that is being acquired. As discussed
in Section 3, we have collected the fixations of 30 projection angles
which provided a stable reconstruction, via FBP, of the 3D saliency
map. Our preliminary investigation showed negligible improvements
from increasing the number of projection angles.

The construction of 3D saliency volume involves the following
three steps:

1. Generate 2D saliency map: we construct the 2D saliency map
from gathered gaze data by convolving the map of fixation loca-
tions with a Gaussian kernel. We calibrated subjects to < 0.5 deg
visual angle. We removed noise in the saliency map after data
collection by thresholding saliency values < 20% of the maxi-
mum value. The size of the constructed saliency map is bounded
to the size of the projection image which is shown with high res-
olution in order to locate user’s gaze data accurately. Therefore,
the underlying saliency map contains redundant background pix-
els that need to be removed before being fed into the recon-
struction algorithm. As an example shown in the top images of
Fig. 1 (b) and (c), we crop the 2D saliency maps according to the
bounding box of the volume which makes it easier to map the
constructed 3D saliency volume to the original volume (step 3).

2. Construct 3D saliency volume: Fig. 1 (c) shows the process of
constructing the 3D saliency volume slice by slice from the rows
of the 30 saliency maps. Each slice Si is located in 2D space
and the respective rows ri of saliency maps are the 1D tomo-
graphic projections. We employ the Matlab function iradon

that uses the filtered back projection algorithm to compute the
inverse Radon transform to construct each slice of the saliency
volume.

3. Resample 3D saliency volume: Since the reconstructed volume
from FBP does not necessarily align with the source volume, we
use a resampling step to obtain saliency values for the voxels in
the original volume.

After all the steps, we generate the 3D saliency volume that indicate
the saliency of the voxels in the original volume.

5 EXPERIMENT

We conducted experiments on three volume datasets: an engine block,
a CT human head and a carp fish. The volumes are rendered using
a semi-automatic transfer function design approach that identifies a
set of distinct representative isosurfaces from a dataset[17]. In order
to understand users general interest to these data, 12 participants (9

male, 3 female, age from 21 ∼ 28) were recruited. The participants
are campus students and were compensated with class credit for their
participation.

Participants viewed the rotating volume on a 17-inch monitor
(1920 × 1080). The rendered images were placed on the screen as
large as possible to increase the accuracy of locating saliency regions.
The participants were asked to adjust their chair height and distance
to the monitor to make themselves comfortable. Then, the system was
calibrated and the rotating volume was present to the participants.

For eye tracking, we used The Eye Tribe eye tracker with a cloud-
based analytical platform. It can locate the gaze locations on the cal-
ibrated screen with less than 20 ms at 60 Hz recording rate. The raw
data was converted into fixations and saccades inside EyeProof plat-
form which can be exported as a spreadsheet for off-line analysis.

(a) Angle 84◦ (b) Angle 264◦

Fig. 4. Saliency volume visualization using red channel at different
view angles: higher saliency voxels are assigned color with larger red
value while the green and blue channels are absent.

In our first experiment, we show the effectiveness of our approach
on a CT engine block (256× 256× 128). The structure of the engine
is relatively simple, and we anticipated that users pay more attention
to the two internal cylinders (see Fig. 1.(a)). After collecting the gaze
data (see Fig. 1.(b)), we generated the fixation locations using Eye-
Proof platform. Fig. 3 (a) shows some examples of overlaying the
fixations (from 12 participants) on the respective projection images. A
similar pattern can be observed from these images, that is fixations dis-
tributed densely at the cylinder region. Thus, the 2D saliency regions
indicated by the fixations matches our assumption. Then, we con-
volved the fixations with the Gaussian kernel (σ = 50) to generate the
2D saliency maps (1920×1080). The saliency maps were thresholded
and cropped to size 1531×1080. It took 79s to construct the saliency
volume (1080×1080×1080) on a standard PC. The constructed vol-
ume is further resampled to match the original volume. The middle



image of Fig. 1 (c) shows a DVR of the 3D saliency volume where
saliency values from low to high are mapped to color blue, green and
red. Comparing to Fig. 1 (c), the saliency volume generally have high
saliency values at the internal cylinder region. Specifically, the left
green ball corresponds to the cylinder parts camshaft and timing gears
while the right green ball corresponds to the cylinder parts flywheel.
Fig. 1 (d) and Fig. 4 displays with the visualizations of engine volume
by modifying the color of the voxels based on the saliency volume. For
each voxel, a higher red value is assigned when it has a larger saliency
value while the blue and green channel are absent. We can clearly see
that the internal cylinders are highlighted as red. The ROI indicated
by the saliency volume matches our 2D saliency inspection, which
further confirmed our assumption and also approve our reconstruction
approach.

(a) Initial visualization (b) Saliency volume visualization

using DVR

(c) Saliency volume visualization

using red channel

(d) Illustrative visualization

Fig. 5. Visualizations of CT human head at angle 270◦: (a) Initial vol-
ume rendering based on a pre-defined transfer function. (b) Saliency
volume visualization using DVR: saliency values from low to high are
mapped to colors blue, green, yellow, red. (c) Saliency volume visu-
alization using red channel: higher saliency voxels are assigned color
with larger red value while the green and blue channels are absent.
(d) Illustrative visualization: uninteresting regions (with low saliency
values) are removed when they occlude interesting regions.

We conducted our second experiment on a more complex dataset: a
CT human head (256× 256× 230). Fig. 5 (a) shows an initially ren-
dered image where a number of features are presented, such as side
props, skin, skull, ribs, spine, vessels, and teeth. The 2D saliency
maps (1920× 1080) were generated by smoothing the fixations with
a Gaussian kernel (σ = 50), then were thresholded and cropped to
resolution 1249×1080. By feeding the 2D saliency maps into the re-
construction process, it takes 49s to construct the 3D saliency volume
(880× 880× 1080) which is further resampled to match the original
volume. Fig. 5 (b) shows the DVR of the generated 3D saliency vol-
ume where saliency values from low to high are mapped to colors

blue, green, yellow, red. The image indicates that instead of the big
structures (e.g. skull and ribs) users are more interested in the internal
structures such as nasal cavity (shown as red) and teeth (shown as yel-
low). More interestingly, the constructed 3D saliency volume models
the shape (vertical stick) of the partial spine with high saliency which
further confirmed the effectiveness of the reconstruction process. The
saliency regions can be more clearly perceived in Fig. 5 (c) where
higher saliency voxels are mapped to color with larger red value while
the green and blue channels are absent. Fig. 5 (d) shows a simple illus-
trative volume rendering that makes use of the 3D saliency volume to
remove less important parts of the volume to generate cut-away views.
In the traditional DVR image (Fig. 5 (a)), the high saliency spine re-
gion is occluded by the low saliency side props and skin. In the il-
lustrative rendering, the spine are expressed more clearly by removing
part of the side props and skins that occlude it.

(a) Initial visualization (b) Saliency volume visualization

using red channel

Fig. 6. Visualizations of carp fish at angle 0◦: (a) Initial volume ren-
dering. (b) Higher saliency voxels are assigned color with larger red
value while the green and blue channels are absent.

To further validate our approach, we conducted another experiment
on a carp fish dataset (128× 128× 128). As shown in Fig. 6 (a), the
initial rendering solidly exposed the fish head while kept the internal
lung and bones clearly visible. We were curious whether user’s at-
tention will be attracted to the prominently rendered fish head or the
internal details. With a similar procedure, the reconstruction process
took 31s to construct the saliency volume for this dataset. By visual-
izing the saliency volume using red channel, Fig. 6 (b) shows that the
saliency regions are located at the front fish bone (bright red) while
the fish head is dark with low saliency. This observation along with
the above-mentioned experiments suggest that users tend to focus on
internal structures of the volume even though an outstanding exterior
structure is shown. But, we need more experiment to verify it.

6 DISCUSSION

We have presented an approach to construct the salient regions in a
volume dataset. Our approach has shown to be effective in producing
saliency volumes from the eye tracking data for various datasets. In
our process, the saliency information is obtained from users by ren-
dering the volume from multiple viewpoints. The constructed saliency
volume can in turn customize the transfer function to better highlight
regions of interest.

For the purpose of exploratory visualization, a current limitation of
our approach is that the detected saliency regions heavily depend on
the choice of transfer function. The volume rendering based on the
transfer function determines the areas that catch more user’s attention
and different transfer functions might result in different saliency vol-
umes. For example, in Fig. 5 (a), vessels and teeth were rendered with
color red that were stand out easily. If we assign them another color
such as the color similar to the skull, then users focus might switch to
other regions. However, a visual stimuli is needed to obtain saliency
information from users, and it make sense to have different saliency
regions for different stimuli. In our future work, we plan to use the
saliency volume in a feedback loop to evaluate the design of transfer
functions. We plan to render a volume with various transfer functions
that are to reveal same set of features. Then the constructed saliency
volumes can be used to evaluate which transfer functions successfully
attract users attention to the specified set of features. Further experi-
ments could include the study of the differences between expert and
non-expert viewers.
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