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Abstract—In this work we present a novel approach of analyzing eye tracking data through temporal analysis of fixation data. We 

adopt a general visual analytic system called Glyph that facilitates comparison of abstract data sequences to understand group and 

individual patterns. Using such a system, researchers can understand how users shift in their fixations and dwelling given different 

stimuli, and how different user groups differ in terms of these temporal eye tracking patterns. In this paper we discuss the system 

using a case study of eye tracking experiment used to investigate emotion regulation among different age groups through the study 

of attention to different parts of a video. Temporal patterns for such a study presents a plus on other eye tracking analysis methods.   

Index Terms—visualization, eye-tracking data, node-link visualization, eye-tracking data abstraction, glyph 

 

1 INTRODUCTION  

Eye tracking hardware and software has facilitated research on visual 
attention and decision-making with implications on marketing and 
design [1]–[3]. For instance, in the field of psychology, eye tracking 
has been used to investigate emotion regulation, visual attention, age 
variation related to attention, etc. [4], [5] Moreover, eye tracking 
research has been situated in many different environments to tackle 
different applications, such as advertisement and marketing through 
looking at visual patterns while watching TV or at a store [6], [7], 
design through looking at eye patterns while playing games or using a 
website [8], [9], and automobile design through eye tracking while 
driving [10], [11], to mention a few. Eye tracking tools for analysis 
and data capture has been gradually evolving to enable such 
investigations in a wide variety of uses. In this paper, we specifically 
target eye tracking data analysis methods. 

Typically, researchers who record eye tracking data focus their 

analyses on aggregations, such as summations of fixations within pre-

specified “Areas of Interest” (AOIs) and compare summed fixations 

toward some AOIs to others, either within or across groups of research 

participants.  Current methods used to aid in this analysis typically 

visualize eye-tracking data as point-based and AOI-based 

visualizations [12]. The point-based approach focuses on the 

movement of fixations and does not require any semantic annotation 

on the data. In the AOI-based approach researchers annotate the 

stimuli in terms of areas of interest and visualizations are used to show 

how fixations are associated such areas of interests, thus giving them 

meaning and providing context. None of these previous methods have 

looked at a way to both (a) analyse temporal shifts and patterns of 

fixation data, and (b) compare these patterns across groups.   

In this paper, we propose a novel visual analytic technique for 

exploration and understanding of look patterns in a 2D, dynamic, 

active stimulus setup (i.e., video clip watching activity). We 

developed a coordinated multi-view interactive visualization system, 

called Glyph, which presents data in two different levels of 

granularity. Glyph uses an abstract representation of a state transition 

space represented as a graph to show how each participant has made 

visual attention choices over time. It coordinates this view with a view 

that shows how the patterns that users exhibited are either different or 

similar by having those that are similar close together and those that 

are different far away. By interacting with the Glyph system, it is 

expected that users are able to compare attention behaviours, thereby 

gaining better understanding of participants’ choices and how they 

compare in their patterns. Glyph has been used before to understand 

player action patterns in video games [13]. 

For the rest of the paper, we first summarize eye-tracking data 

visualizations. We then describe our proposed Glyph system. Next, 

we will discuss a case study where we used Glyph to analyse visual 

attention patterns among different age groups to understand age 

differences in attention and emotion regulation. Finally, we discuss 

some preliminary findings of researchers when using the system, 

before concluding the work. 

 

 Truong-Huy D. Nguyen is with Texas A&M University-Commerce, 

Commerce, TX. Email: Truong-Huy.Nguyen@tamuc.edu 

 Michael Richards, Magy Seif El-Nasr, and Derek Isaacowitz are with 

Northeastern University, Boston, MA. E-mails: mricha09@gmail.com, 

{magyse, D.Isaacowitz}@neu.edu. 

Fig 1. Comparing visual attention patterns using Glyph. The data used for visualization is abstracted from raw eye-tracking data, 
capturing features of interest such as the size and intended emotion of AOIs, as well as participant’s looking time. The left graph 
shows moment-to-moment pattern, while the right shows overall differences. 



 

2 RELATED WORK  

Frequently used visualization techniques designed for eye-tracking 
data can be roughly divided into two categories: aggregated plots that 
disregard temporal information, and those that aim to reflect temporal 
relationships in the data. The first category includes statistical 
graphics, such as line, bar charts, scatter/box plots, etc. [14]–[18], and 
heat maps [19]–[23]. Heat maps are often overlaid on the stimulus as 
a way to connect the visualized data to its context. The second 
category comprises of techniques that accumulate eye-tracking data in 
the visualization without losing temporal information, such as 
timeline and scan path visualizations [24]–[27]. A thorough 
categorization of visualization techniques designed for exploratory 
eye-tracking data analysis can be found in the article by Blascheck et 
al. [12]. The visualization technique presented in this paper belong to 
the second category, as we would like to examine attention paths. 
In plotting eye-tracking data trails, there are two main approaches: 
timelines and relational visualizations. In the former approach, time is 
represented as an axis in the coordination system, such as the x- 
(horizontal) axis in a 2D space [28], [29], or a third axis in a 3D space 
[19]. For instance, time plots [28] represents different AOIs as 
different lines on the y-axis and time on the x-axis, while the node size 
represent the duration of attention (Figure 2a).  

The latter approach on the other hand does not dedicate a specific 

dimension to time. Instead, it encodes temporal information as 

transitions between AOI nodes in a node-link representation [30]–

[32]. For instance, if the AOIs are represented as nodes, the node size 

can encode dwelling duration while link thickness depicts the 

frequency of transition (Figure 2b). More statistical information such 

as overall dwelling percentage can be displayed as text overlaid on 

respective nodes. Our visualization as explained in subsequent 

chapters extends on this approach, i.e., accumulating AOI sequences 

of participants into a node-link graph. However, in our graph, each 

node represents an abstract look state, instead of a certain AOI.  

3 GLYPH V ISUALIZATION  

There are many ways to present eye-tracking data visually to 

researchers (see Section 2), but in order to make it easy to compare 

participants and understand the common and unique patterns, we 

opted for visualizing abstracted data instead of the raw counterparts, 

using a general data visualization system called Glyph.  

The task first requires us to transform raw fixation trails into 

sequences of look states, i.e., abstracted states describing the manner 

of looking at a specific type of AOIs (e.g., long/medium/short look at 

a large, positive AOI). Given these abstracted sequences, our goal is 

to visualize the paths that people in different groups took when 

watching a specific stimulus over time, such as a video clip. 

Additionally, we would like the visualization to support the basic 

exploration acts of (1) identifying common and unique paths, and (2) 

comparing different paths to one another. Glyph comprises of two 

coordinated views of sequential behaviour data, showing the state 

graph and the sequence graph, that work perfectly for this purpose. 

3.1 State graph 

State graph summarizes the look trails exhibited by all participants. It 

consists of nodes as look states, and links as transition decisions. For 

instance, a directed link from a look state characterized by (positive, 

small, short) to (negative, small, long) means, after quickly looking 

(“short”) at a small-sized AOI (“small”) that intendedly elicits positive 

emotion (“positive”), the participant spends a lot more time (“long”) 

scrutinizing a small-sized AOI (“small”) eliciting negativity 

(“negative”). The popularity of look states, i.e., how frequently the 

group members land on the state, is depicted by the respective node 

size. The popularity of transitions is encoded as link thickness. We 

further use color to depict the affective state of each node: pink is 

positive, yellow is neutral, and green is negative. The layout of the 

graph can be force-directed, or clustered according to some prefixed 

semantic information (Figure 3). The goal of this graph is to allow 

quick detection of popular transitions, leading to discovery of 

common group patterns. 

Figure 3 depicts an exemplary state graph resulted from visualizing 

abstracted data obtained from our case study (discussed below) where 

participants are asked to watch a video clip called “Marley and Me”. 

In this clip, there are four negative, two positive, and two neutral 

AOIs, as such the majority of the AOIs are negative. Depending on 

whether participants choose to look at or skip certain AOIs, and how 

long their eye fixations are in the former case, each participant exhibits 

a different path from start to end, all of which are collated to form the 

links and nodes in the graph. Nodes that do not have any links 

associated with them either (1) denote AOIs that do not exist in the 

clip, e.g., there is no large positive AOI in “Marley and Me”, or (2) 

represent behaviour not performed by any participant. For example, 

the graph in Figure 3 shows that nobody spent significant (long) time 

on small, negative AOIs in this clip. The same applies for links; no 

link between two nodes indicates that no such transition is present in 

the data. 

3.2 Sequence graph 

Different from the state graph, the sequence graph’s (see Figure 4) role 

is to present visually an overview of complete state sequences. 

Specifically, each node in the sequence graph represents one full 

pattern, which can be exhibited by one or more participants, the more 

the larger size it is. 

The distances between these sequence nodes are determined using  

Dynamic Time Warping [33], a method generalizing Minimum Edit 

Distance [34] to compute sequence differences by accumulating state 

differences. In general, any metric function deemed suitable to capture 

Fig 3. State graph of treatment group data when watching “Marley 
and Me”. Look states associated with positively affective AOIs are 
pink nodes, neutrally yellow, and negatively green; nodes of the 
same affective type are clustered in their respective groups. Start 
(blue) and end (black) nodes do not correspond to any AOI type; 
they act as landmarks in the graph. 

Fig 2. AOI-based approaches; (a) time plots with x-axis as time, 
circle size as duration and y-axis as AOI index/type, (b) relational 
AOI visualization with AOIs being nodes and links transitions 
between them. Figures are adapted respectively from [28], [32]  

  (a) time plots (b) relational AOI visualization 



the difference of abstracted states can be used. Scanpath similarity 

measures [35] however do not work out of the box, since we need a 

measure on abstracted data, not the raw scanpath data.  

We first define the difference of look states as 𝑑(𝑠1, 𝑠2) =
|𝑉(𝑠1) − 𝑉(𝑠2)|, with 𝑉(𝑠𝑖) being the value of the respective look 

state, computed as: 

𝑉(𝑠) =
affect(𝑠) ∗ duration(𝑠)

size(𝑠)
 

in which 

 affect(s) is a numeric representation of the affect associated with 

the AOI, i.e., -1 for negative, 0 for neutral, and 1 for positive AOIs. 

Note that this means all neutral look states have value 0, i.e., the 

look states associated with neutral AOI are not differentiated based 

on their size or duration, in comparing full sequences. This 

treatment is eligible, since we are more interested in emotion 

regulation with respect to positivity/negativity. 

 duration(s): the look’s duration; short is 1, medium 2, and long 3. 

 size(s): the size of the AOI; small is 1, medium 2, and large 3.  

The state difference therefore is large if the looks are vastly 

different, in terms of emotion, size, and look duration. With this metric 

function, the sequence difference can then be computed using the 

following procedure. 

Dynamic Time Warping: Given 𝑑(𝑠1, 𝑠2) as the difference of any 

state pair 𝑠1 and 𝑠2, the difference 𝐷(𝑎, 𝑏) of two sequences 𝑎 =
{𝑠1, 𝑠2, … , 𝑠𝑛} and 𝑏 = {𝑞1, 𝑞2, … , 𝑞𝑚} is computed as 𝐷(𝑛,𝑚) as 

follows 

1. Initialization:  

a. 𝐷(0,0) = 0 

b. For 𝑖 in [1, 𝑛] and 𝑗 in [1,𝑚]:   𝐷(𝑖, 0) = 𝐷(0, 𝑗) = 𝑖𝑛𝑓 

2. Recursion: For 𝑖 = 1 to 𝑛 and 𝑗 = 1 to 𝑚 

𝐷(𝑖, 𝑗) = 𝑑(𝑠𝑖 , 𝑞𝑗) + 𝑚𝑖𝑛 [

𝐷(𝑖 − 1, 𝑗),

𝐷(𝑖, 𝑗 − 1),
𝐷(𝑖 − 1, 𝑗 − 1)

] 

3. Return 𝐷(𝑛,𝑚) 

3.3 Visual Coordination: Synchronized Highlighting 

The two graphs in Glyph are coordinated through the use of 
synchronized sequence highlighting, in which the selection of a 
sequence node will at the same time highlight the rolled out 
representation in the state graph (Figure 5). This allows easy 
comparison at two levels of details: moment-to-moment in the state 
graph, and full sequence difference in the sequence graph. 

The coupling of state and sequence graphs through visual 

coordination facilitates three important cognition tasks: 

1. Detection of attentional patterns: The sequence graph allows 

quick detection of common patterns, recognized as groups of 

sequence nodes in close proximity. By selecting a group of 

similar nodes, users can examine all fixations and states 

involved in the state graph to come up with hypotheses about 

this group’s behaviour. 

2. Detection of unique behaviour: Isolated nodes in the 
sequence graph represent paths that are significantly 
different from the population. Examining corresponding 
paths in the state graph helps user gain insights on what 
happened and thus hypothesize on why. 

3. Comparison of behaviour: Examining vastly different or 
similar paths (shown as nodes far apart or close by in the 
sequence graph) in the state graph allows users to 
understand the nuanced differences between them. 

4 CASE STUDY 

To apply the visualization system and show its utility in opening up 

different methods of analysis, we teamed up with a psychology group 

who is running a study on visual attention, emotion regulation and 

differences between age groups. In this project, the researchers aimed 

to investigate the effect of age on use of certain emotion regulation 

strategies. Previous research indicates a positivity bias on the part of 

older adults when compared to younger and middle aged adults. This 

means that, in general, older adults report being happier than their 

younger counterparts, and also tend to focus their attention and 

memory on positive rather than negative material [36]. Eye tracking 

can be used to determine whether there is an age difference in how 

individuals modulated their attention based on how they feel [5]. As 

such, the overall research question for the study was: how do adults of 

different ages use affective choices and visual fixation to regulate 

negative mood states? 

4.1 The Study 

In order to answer the above question, the researchers designed an 

experiment, in which participants are tasked to choose from a variety 

of clips that can cause positive and negative emotions to watch. For 

instance, a clip selected comes from the last scenes of the movie 

“Marley and Me”, showing memories the main character had with his 

dog while facing the fact that the pet is dying soon. While the 

memories generally contain fond and happy moments, the up-close 

shots of the dying dog could cause great sadness to viewers. 

Initially 150 subjects were recruited. After filtering (i.e., only 

include participants with gazes tracked at least 75% of the time), there 

are a total of 42 young adults (18-34yos, µ=20.52, σ=1.58), 45 middle-

aged (35-64yos, µ=48.2, σ=6.73) and 45 old adults (≥65yos, µ=70.85, 

σ=7.35) in the data set. They are further divided into two groups: the 

treatment group (65) are asked to stay positive throughout the session 

of clip watching, while the control group (67) are not given any 

instruction. Because participants can select which clips to watch, not 

every participant in the study watched the same clips. Each participant 

watches the clips alone to avoid any noise caused from group 

interaction. The gaze points of participants throughout the session are 

recorded, showing where they look at, when, and for how long.  

Fig 4. Sequence graph with nodes colored according to the 

dominant emotion associated with the traced AOIs; yellow 

nodes are sequences domminated by neutral AOIs, green 

negative, and pink positive. Node indices indicate popularity. Fig 5. Coordinated highlighting: selection of sequence nodes in 
sequence graph (right) highlights respective paths in the state 
graph (left) with the same colour. 



 

The researchers are specifically interested in understanding how 

participants deploy their attention, with instruction and age being two 

controlling variables that affect their attention patterns; the collected 

data is being actively studied. Visualizing the data using Glyph aims 

at allowing them to identify commonalities as well as uniqueness in 

eye-gazing behaviour. The visualization examples shown in Figure 6 

were from one particular clip, i.e., the “Marley and Me” clip as 

described above. While not all participants watched this clip; there are 

about 16% of them did (9 treatment, and 8 control). 

4.2 Data Preparation 

The clip that participants watch is annotated a priori with AOIs, 

marked up as “positive”, “negative”, and “neutral”. While positive and 

negative AOIs are those that presumably cause watchers to experience 

respective emotions, neutral AOIs are visually interesting by 

themselves but do not carry any emotion meaning. For each AOI, we 

know where and how much screen estate it takes up within the frames 

where it appears, as well as how long it lasts.  

Participant eye fixation data was recorded at a temporal resolution 

of 30 Hz, and an accuracy of .050-1.00 visual angle using an ASL 

(Applied Science Laboratories, Bedford, MA) MobileEye XG eye-

tracker. Fixations were defined in the system as holding a point of gaze 

for 100ms without deviating more than one visual degree. As such the 

fixation data details with high accuracy where the participants look at 

and when.  

Given AOI information, we could abstract the raw data, turning 

them into sequences of look states, each of which consists of three 

descriptors 

1. The emotion associated with the AOI: negative, positive, or 

neutral. Negative AOIs contain unpleasant scenes (e.g., a dying 

dog), while positive ones contain visuals that are uplifting or 

pleasant to view (e.g., a dog playing cheerfully with the owner 

in the back yard). Neutral AOIs on the other hand consist of 

visually salient objects, which naturally draw the viewers’ 

attention but do not aim at any specific emotion (e.g., an untidy 

room with objects of different sizes and types scattering 

around). 

2. The size of the AOI: small, medium, or large. A small AOI 

covers less than 25% of the screen during in its duration, 

medium 25-49.99% of the screen, and large greater than 50%. 

3. The duration of looking, i.e., short, medium, or long. This 

attribute is computed in comparison to the total duration of the 

AOI. A short look only lasts less than one third of the total 

duration, medium 1/3-2/3, and large greater than 2/3.  

 Each participant’s eye-track log is processed in this way over the 
course of the clip’s duration, to return a sequence of look states. 

5 D ISCUSSION  

As reported by the researchers, the visualization’s most useful feature 

was the ability to highlight common routes through the video, thereby 

showing similarity between participants. This feature of the tool is 

currently used to study differences among subject age and treatment 

groups in terms of within-group common visual routes. For example, 

Figure 6 shows the behavior differences in the two groups, suggesting 

that the treatment group (i.e., instructed to stay happy) seems to put in 

some effort to stay happy as their popular trails pass by positive AOIs 

more often (Figure 6b), whereas the control group (i.e., without any 

instruction) does not attempt to do so, i.e., popular trails did not 

include nodes associated with positive AOIs (Figure 6a).  

Having tried Glyph, the researchers learnt that this system would 

benefit from a slightly altered experiment setup. Currently, the clips 

used in our study are composed of segments of one single emotion 

(i.e., the choices are vertical). For instance, “Marley and Me” shows 

segments of positive, neutral, or negative emotion but not all of them 

at a time. Therefore, participants do not have a complete freedom in 

selecting what they want to watch. They can only choose to pay more, 

less, or none at all, attention at each frame. Ideally, if we have clips 

that comprise of more emotions mixed together within a single frame 

or segment, subjects will be granted more freedom in selecting the 

region of interest at any point of time. For example, if a scene shows 

at the same time a sad event in one corner of the screen and a happy 

event in the other, tracking the eye movement of the subject will better 

inform us about their choices, i.e., whether the subject focuses more 

on the happy area or the sad area in that clip segment. In such case, 

the tool would help researchers understand subjects’ decisions in the 

context of multiple alternatives, i.e., horizontally. 

Future work would entail more analysis with the current system 

and utilizing it more in the analysis process within psychological 

experiments (the described study is still ongoing). We also aim to 

integrate this system within other eye tracking experiments to see how 

well it generalizes and also develop it for better flexibility to allow 

best utility given the divergent eye tracking research questions.   

6 CONCLUSION  

In this paper, we proposed a novel approach in analysing eye tracking 
data using a visualization system we developed called Glyph. The 
process includes an abstraction phase where raw eye fixation data are 
projected into an abstract state space. Next, the data is visualized in 
two graph views, namely state and sequence graphs, which display the 
data in two forms: state sequences and aggregated representations. 
Using coordinated highlighting to synchronize the content presented, 
the final system aims to facilitate user interactions to complete three 
cognitive tasks: detection of attentional patterns, detection of unique 
behaviour, and comparing behaviour sequences. The preliminary 
assessment of the system with the researchers demonstrated the 
prospect of the system. As this proposed method is still in its infancy 
state, we hope to continue developing it in many eye-tracking 
experiments and would welcome more studies trying this approach to 
examine temporal patterns of attention.  
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 Fig. 6. Most popular strategies highlighted in two subject groups. 
The state graph is laid out so that nodes associated with positive 
AOIs are in the top cluster, neutral bottom left, and negative 
bottom right. (a) Control group’s most popular trails do not visit 
nodes in positive AOIs (), while (b) treatment group’s most popular 
trails do. Note that currently overlapped links take colors of one of 
the selected trails. 

(a) Control group 

(a) Treatment group 
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