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Fig. 1. Time-varying eye tracking data for a sequence of static image stimuli: The recorded data is visualized as stack of time-aligned
plots. Differences between the left and right eye can be detected by visually comparing the length of plots mirrored on corresponding
horizontal lines. Differences between the individual eyes and the combined eye can be detected by visually comparing the darker
line drawn on top of the brighter plot. From top to bottom: time, activity, recognition confidences, normalized camera–eye distance,
normalized pupil size, decomposed gaze coordinates, velocity, acceleration, and jerk.

Abstract—Analysis and visualization of eye movement data from eye tracking studies typically take into account gazes, fixations,
and saccades of both eyes filtered and fused into a combined eye. Although this is a valid strategy, we argue that it is also worth
investigating low-level eye tracking data prior to high-level analysis, since today’s eye tracking systems measure and infer data from
both eyes separately. In this work, we present an approach that supports visual analysis and cleansing of low-level time-varying data
for a wide range of eye tracking experiments. The visualization helps researchers get insights into the quality in terms of uncertainty—
not only for both eyes in combination but each eye individually. Furthermore, we discuss uncertainty originating from eye tracking,
how to reveal it for visualization and illustrate its usefulness using our approach by applying it to eye movement data formerly recorded
with a Tobii T60XL stationary eye tracker using a prototypical implementation.

Index Terms—Eye-tracking, low-level data, time-varying data, data cleansing, uncertainty.

1 INTRODUCTION

Eye movements recorded during eye tracking studies are typically
analyzed and visualized by temporal aggregation like in attention
maps [13]. While this allows us to derive hot spots [5] of visual at-
tention, we cannot analyze time-varying patterns. If gaze plots [8]
are used, the time-varying behavior is explicitly encoded in the vi-
sual representation, but for long-lasting tasks and a larger number of
study participants the amount of visual clutter increases, making such
a visualization difficult to read. Many visualization techniques have
already been developed to analyze eye movement data for patterns [4],
but most of them only take aggregated eye movements into account.

We start earlier than the typical process and argue that a separate
visualization of low-level time-varying data can help explore the eye
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movements regarding reliability. Due to the wide variety of eye track-
ing experiments we introduce a generic reference workflow in Sec-
tion 3. Our contributions are a discussion of uncertainty in the context
of eye tracking in Section 4, a formal cleansing technique for time-
series in Section 5, and a visualization technique in Section 6 that re-
veals disagreement between the left, right, and combined eye.

We demonstrate our visualization technique by applying it to eye
tracking data from a previous eye tracking study conducted with a sta-
tionary Tobii T60XL eye tracking device in Section 7. As a major
outcome, we find differences over time between left, right and com-
bined eye while visually inferring credibility of the recorded data.

To avoid misunderstandings, since work-in-progress results are pre-
sented: the described visualizations to locate suspicious data are fully
implemented, but emitting of cleansed data is not.

2 RELATED WORK

Much of the previous work on both eye tracking and data cleansing
occurs within isolated domains. Holmqvist et al. [11] already noted
that standard metrics would be of great help when assessing eye track-
ing data quality. They further argue that fixation filters and correlation
with areas of interest may actually hide errors. To our knowledge, it



Fig. 2. Reference workflow for eye tracking experiments. Experiments are designed and executed to gain recordings, which can be cleansed and
analyzed to obtain a result. The final result is composed from a description of how the cleansing was performed and acquired insights.

seems much more common to enhance study quality by reducing mea-
surement errors introduced by sampling frequency [2] or user move-
ment [7][3], instead of communicating uncertainty present in recorded
data. Singh et al. [17] and Al Rahayfe et al. [1] provide reviews of
anatomical and technical aspects of eye tracking in general, which are
used for discussion later on.

We apply a rationale by Skeels et al. [18] to eye tracking, stating that
visualizing uncertainty could help make better decisions. Furthermore,
we base our discussion on a review of uncertainty visualization by
Brodlie et al. [6].

Rahm et al. [14] classify data quality problems for data cleansing
in the data warehouse domain. Their definition of single-source and
multi-source problems transfers well to our work. Kandel et al. [12]
describe a technique to interactively infer mapping functions from ma-
nipulation of data, but they do not deal with sequential, time-varying
data. Gschwandtner et al. [9] propose design principles and techniques
to exploit time specifics for data cleansing, but they do not visualize or
propagate different facets of uncertainty originating from a processing
pipeline, like eye tracking.

We apply uncertainty visualization and data cleansing to eye track-
ing to create a tool for semi-automatic analysis and cleansing of low-
level eye tracking data.

3 EXPERIMENT WORKFLOW

In advance to discussing uncertainty in eye tracking, we will elaborate
on the integration of our tool into a reference experiment workflow,
like shown in Figure 2: An eye tracking experiment is designed by
a researcher and executed to obtain a recording of time-varying data
for each participant. We explicitly refrain from using the term eye
tracking data or similar on a workflow level, because other data might
be recorded as well during execution. Raw recordings may be very
hard to compare and analyze, because the order of stimuli may vary
by experiment design, recordings may contain recognition errors and
originate from multiple eye trackers, and so on.

We believe that proper and comprehensible data cleansing prior to
analytics can reduce data quality issues by repairing corrupt data and
making heterogeneous data consistent. Furthermore, we propose in-
corporating a description of how the cleansing was done into the final
results, since cleansing has the same potential to hide errors, as fixa-
tion filters do, like noted by Holmqvist et al. [11].

Considering the range of available eye trackers and different types
of experiments, we made as few assumptions as possible about hard-
ware and use cases to keep our approach generic. We assume that

data is a time-varying series of samples, which allows us to split data
into time segments and take a semi-automatic approach to data cleans-
ing. For implementation reasons, we limit ourselves to stationary eye-
tracking setups using video stimuli with a duration of less than one
hour per recording, even though our concepts should transfer well to
any type of time-varying data.

4 UNCERTAINTY IN EYE TRACKING DATA

Our cleansing technique is based on one question: What reveals and
separates flawed from trustworthy data, and thus is crucial for decision
making during cleansing? This question leads to the topic of uncer-
tainty, which introduces new complexity and data analysis challenges.

4.1 Uncertainty Model
We will adhere to a classification by Skeels et al. [18] to discuss differ-
ent aspects of uncertainty in the context of eye tracking. Their classi-
fication is simple and distinguishes between measurement, complete-
ness, and inference, orthogonally to disagreement and credibility. We
apply their classification to a simplified eye tracking pipeline, con-
densed from related work [1][17][16][19] and depicted in Figure 3,
to illustrate sources of uncertainty originating from eye tracking. The
process of optical eye tracking starts with photons hitting sensor pixels
on a camera chip, aggregated during exposure time to a sequence of
images, forming a video. This process introduces measurement uncer-
tainty because of physical properties of pixels such as size and signal-
to-noise ratio. Additionally, completeness uncertainty is induced, be-
cause of aggregation and sampling. Subsequently, each eye is rec-
ognized independently, fused into a combined eye, and synchronized
with other data, composing a sample. Many eye trackers address un-
certainty algorithmically, e.g., internal latencies get canceled out, and
missing values are estimated using a co-simulation of the participant’s
eyes [20]. Most vendors provide uncertainty-related information as a
part of technical specifications and recorded data, e.g., angular gaze
accuracy, sampling resolution, and recognition confidence. Hence, an
eye tracking device exhibits all three levels of uncertainty and many of
their sub-systems have to be considered as block boxes. Unfortunately
this means we have to rely on information provided by vendors, which
limits our basis for revealing uncertainty and prevents us from finding
a common denominator.

Nevertheless, we believe that visualizing uncertainty helps re-
searchers find disagreement in data and estimate a credibility of their
recordings. Formally, we try to model and visualize uncertainty as
probability density functions (PDF) and nominal data.
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Fig. 3. Reference eye tracker pipeline, decomposed into different layers of uncertainty. Each eye is recognized individually and then fused to a
combined eye. Subsequently, all data is synchronized and emitted as sample.



4.2 Gaze Data
When inspecting low-level data, we do not want to redo all work the
eye tracker has already done for us, even though inspecting raw sensor
data could help assess recognition errors originating from reflections
and blinks. Instead, we will focus on uncertainty present in gaze data
for the left eye L, right eye R, and combined eye C at time T . Spatial
uncertainty can be modeled using PDFs p to describe accuracy and
plausibility. Temporal uncertainty can be modeled using rectangular
functions i to describe time intervals. Formally, this boils down to a
set of tuples:

(i(T ), p(L), p(R), p(C)) (1)

Furthermore, we need a solid definition of space to create useful vi-
sualizations. Unfortunately, it is not always possible to determine the
actual eye–stimulus transformation, because depth may be approxi-
mated or unknown. Most eye trackers make an educated guess by
defining the recorded video as stimulus, since the camera–eye distance
can be measured quite well. Although this is a clever approximation, it
poses problems when dealing with multiple recordings, because find-
ing a common space can be a really hard problem of itself, especially
for mobile devices. Fortunately, it is easy to solve for stationary de-
vices, which allows combined cleansing and preliminary analysis of
multiple recordings.

4.3 Signal and Event Data
A recording may include other data, like signals S and events E with
parameters Pn, that also require cleansing; for instance, the steering
angle can be of interest in an automotive context. Temporal uncer-
tainty i and j also apply to signals and events. Temporal uncertainty
for samples and events is different, because events are not sampled.
Spatial uncertainty of signals can also be modeled as PDF g, which is
different from PDF p used for gaze data, since signals most likely can
not be checked for plausibility. Formally, this also boils down to a set
of tuples:

(i(T ), g(S)) (2)

(j(T ), E, P1, ..., Pn) (3)

This rather generic definition fits all remaining aspects of a record-
ing, i.e., stimuli changes, latencies, trajectories, keyboard, mouse, and
touch input.

5 CLEANSING TECHNIQUE

Our processing model is non-destructive, i.e., all data is interpreted as
immutable stream of data and processed by a pipeline composed of
functions—this is also called the pipes and filters pattern. A function
can perform any non-destructive mapping on a stream. If a stream is
pushed or pulled, all affected streams are updated according to their
dependencies in the graph. We have chosen this design, because it
allows some advanced scenarios such as live monitoring and live us-
age with other tools. Formally, we want to setup a processing graph
G(f, c) composed of functions f and connections c. During cleans-
ing, we want to interact with a time-series domain (t, x) and inspect
the resulting codomain (t′, x′):

f ∈ G : (t, x) → (t′, x′) (4)

Visual cleansing means inspecting a function’s visual response,
while adjusting (optional) parameters to manipulate data. To illustrate
this concept, we describe a couple of use cases and functions:

Velocity, Acceleration, and Jerk might be of interest in general for
any time-varying positional data. All values can be obtained by
simply chaining a differentiating function up to three times.

Interpolating Data is likely to be useful for repairing corrupt data.
Such a function could do interpolation, if a trigger signal is set,
and pass-through otherwise.

Fixation Filtering is employed to prepare low-level gazes for high-
level analysis. Hence, it seems like an obvious choice to incor-
porate fixation filters into cleansing.

Let us assume a simple cleansing function that drops data if a trig-
ger signal is set and does pass-through otherwise. Depending on the
amount of data gathered, tuning this trigger signal can be a pretty
tedious task. Therefore, we had to come up with an idea to spare
users from small-scale work. Our approach is to split data into time-
segments of interest in a semi-automated fashion and let the user val-
idate time segments during cleansing. The main idea is to employ
functions to the processing graph that analyze signals, such as recog-
nition confidences or other quality metrics, to emit time segments. As-
suming the processing graph was setup correctly, this approach allows
going from macroscopic to microscopic cleansing very quickly with-
out missing anything. Creating the processing graph is iterative, hence
we distinguish between single and multiple occurrence:

Single-Occurrence segments appear rarely during a cleansing ses-
sion. As an example of such intervals, the participant might have
done something invalidating, which was noted by the supervis-
ing researcher. Formally, the domain is tuned manually and the
function only applied to one segment. This is a time-local mod-
ification to the processing graph and thus allows implicit valida-
tion after the modification is applied.

Multi-Occurance segments are either easy to detect or occur more
commonly, i.e., the user will likely feel the need for automation.
As an example of such intervals, the eye tracker might use magic
values to convey error states, which have to be dropped prior to
analysis. Formally, the function is applied to all segments and
its domain is tuned semi-automatically. This requires the user to
(re-)validate all affected segments explicitly.

6 VISUALIZATION TECHNIQUE

Our technique uses a stack of specialized, time-aligned visualizations
for each type of data. Time runs from left to right and the stack
is sorted in alignment to the specified processing graph to support
mental retracing of the data flow. Additionally, we use ColorBrewer
palettes [10] to encode information into color.

6.1 Stereo Plots

Fig. 4. A stereo line plot showing the left, right, and combined eye. The
right eye chart is flipped below the left eye plot. Differences between
the individual eyes and combined eye can be detected by comparing
the dark line, representing the combined eye, on top of the individual
eye plots.

We use stereo plots for eye-related data—the name originates from
the fact that the right eye plot is flipped below the left eye plot and the
combined eye rendered on top of both. Stereo plots manifest as line
plots and scarf plots [15].

Line plots are used for ratio-scale data, like shown in Figure 4. A
line plot can be normalized to emphasize changes with equal scaling
for all eyes.

Scarf plots are used for nominal-scale data such as activity and
events, like shown in Figure 5. Activities may be concurrent, hence
a scarf plot may be subdivided vertically to indicate concurrency.



Fig. 5. A stereo scarf plot showing activity data over time for the left and
right eye. The right eye chart is flipped below the left eye plot.

7 CASE STUDY

The case study aims at showing how to apply the visualization tech-
nique, i.e., how to identify typical relationships between visual repre-
sentations of data that indicate an error.

We have used test data from a previously conducted study with five
subjects using a Tobii T60XL and Tobii Studio 2.2.8. The test was
conducted in a distraction free room, illuminated with diffuse light.
This study is particularly interesting, because the subjects had to match
a line to some dots, leading to very fast, comparative eye and head
movements. Figure 6 visualizes several time slices from the described
data. We start with a description of all representations from top to
bottom:

Time is represented as simple ruler and measured in seconds. Scaling
was chosen so that one sample is represented by one pixel in
width.

Activity events are represented as scarf plot. Long bars depict visi-
bility of image stimuli. Short bars (at the end of stimuli) depict
left mouse clicks by the participant.

Confidence is represented as stereo scarf plot for each eye individu-
ally. Combined eye confidence is not emitted by the eye tracker.
Light blue depicts “all fine”, other colors depict “error”.

Camera–Eye Distance & Pupil Sizes are represented as stereo line
plots. The former is the Euclidean distance computed from the
eye coordinates. The latter is, according to Tobii, an estimate
of the true pupil’s size. Both plots are normalized to emphasize
changes, hence no unit in the legend.

Gaze X & Y are represented as stereo line plots. In addition to the
individual eyes the combined eye is depicted using a darkened
line.

Gaze Velocity & Acceleration & Jerk are derived from gaze coor-
dinates through differentiation and represented as stereo line
plot. Again, the combined eye is depicted using a darkened line.

Next, we will visually inspect all slices from A to D and draft
possible steps for cleansing. The red lines between the plots highlight
samples for inspection.

Slice A shows minor recognition jitter for both eyes in the con-
fidence plot between 1 s and 2 s, which reveals corrupt values in the
plots below. Note how the dark lines of the combined eye in the gaze
plots do not intersect with the light colored areas of the individual
eyes. This allows us to infer that the eye tracker has repaired those
errors during eye fusion. If one wants to compare the left, right, and
combined eye in an analysis, it might be a good idea to reconstruct
the missing individual eye data. To stay within our cleansing model
this would be a single-occurance function that interpolates the missing
values, assuming a simple mean value from the combined eye as input.

Slice B reveals more fusion heuristics used by the eye tracker, as
both eyes were missing around 19 s and the combined eye is still emit-
ted. We can safely assume that the eye tracker does not use simple
interpolation to fill in missing data, since the small time segment be-
tween the recognition errors does not seem to be a supporting point.
This could be a problem if analysis is prone to movement, accelera-
tion, or jerk jitter. In our cleansing model, fixing this could be done by

using a single-occurance function that interpolates smoothly to fill in
missing data if both eyes are not recognized. Furthermore, magic val-
ues can be observed during image stimulus switching by correlating
activity with confidence. This is documented behavior and cleans-
ing can be done using a multi-occurance find-and-drop function set to
auto-validation, i.e., requiring no further input by the user.

Slice C shows that not all small errors are successfully repaired.
Around 28 s the recognition of the left eye fails, shortly after the right
eye fails. This seems to bail out error correction for a small amount of
time, hardening our suspicion against the combined eye data.

Slice D shows the same issue as B and C . We have encountered
the same error three times (arbitrary), which is why we would like to
apply our previously specified single-occurance functions to all time
segments to removing all false eye movement from our data. To do so,
we upgrade our previously applied functions to be multi-occurance. If
previously cleansed data changes during this process, this will cause
re-validation.

Another interesting observation across all slices is, that the partic-
ipant’s pupil sizes seem to be unsynchronized. Unless this is caused
by the eye tracker, it might be worth investigating from a medical per-
spective.

Once, we have cleansed and validated all remaining data, we pro-
pose a cleansing report. This report would describe the amount of
missing and modified data, e.g., as percentages per recording and time
segment, which could be easily incorporated into study results.

8 CONCLUSION AND FUTURE WORK

We discussed uncertainty in the context of eye tracking and a pro-
cessing model for data cleansing. Additionally, we presented a tech-
nique to visually deduce disagreement and credibility by comparing
time-aligned, stacked representations of eye tracking data. In partic-
ular comparing the left and right eye against the combined eye seems
to be a good strategy. Results from our initial prototype suggest that
more interaction techniques are required to explore eye tracking data
during cleansing.

We want to extend our approach to measurement uncertainty and
fixation filters or rather their visual response. We believe this could
be useful for correlation with areas of interest and filter tuning. Fur-
thermore, we want to broaden the scope to heterogeneous data from
multiple participants.
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